Общество с ограниченной ответственностью «Компания сопровождения экологических проектов «Геоэкология Консалтинг»

(ООО «КСЭП Геоэкология Консалтинг»)

Заказчик: ООО «Дальневосточный Агротерминал»

«Производственно-логистический комплекс в Амурской области ООО «Дальневосточный Агротерминал». Энергоцентр»

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 13. "Иная документация в случаях, предусмотренных законодательными и иными нормативными правовыми актами Российской Федерации"

Оценка воздействия на окружающую среду

ЕФБЛ24.113-ОВОС3

Книга 3. Приложение Г

Том 12.3.3

зам. инв. №

дпись и да

е подл.

Директор

Э.М. Кизеев

СОДЕРЖАНИЕ	стр.
Приложение Г Подтверждающие расчеты выбросов	
загрязняющих веществ	3

Приложение Г Подтверждающие расчеты выбросов загрязняющих

веществ

Валовые и максимальные выбросы предприятия №604, Дальагротерминал Котельная, Белогорск, 2025 г.

Расчет произведен программой «АТП-Эколог», версия 3.20.22 от 14.09.2021 © 1995-2021 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
- 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Программа зарегистрирована на: ФГБОУ ВО "УГЛТУ" Регистрационный номер: 03-11-0036

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

```
1 - Бензин АИ-93 и аналогичные по содержанию свинца;
2 - Бензины А-92, А-76 и аналогичные по содержанию свинца;
3 - Дизельное топливо;
4 - Сжатый газ;
5 - Неэтилированный бензин;
6 - Сжиженный нефтяной газ.
                     Значения в графе "О/Г/К" имеют следующий смысл
       1. Для легковых автомобилей - рабочий объем ДВС:
1 - до 1.2 л
2 - свыше 1.2 до 1.8 л
3 - свыше 1.8 до 3.5 л
4 - свыше 3.5 л
       2. Для грузовых автомобилей - грузоподъемность:
1 - до 2 т
2 - свыше 2 до 5 т
3 - свыше 5 до 8 т
4 - свыше 8 до 16 т
5 - свыше 16 т
       3. Для автобусов - класс (габаритная длина) автобуса:
1 - Особо малый (до 5.5 м)
2 - Малый (6.0-7.5 м)
3 - Средний (8.0-10.0 м)
4 - Большой (10.5-12.0 м)
5 - Особо большой (16.5-24.0 м)
```

Белогорск, 2025 г.: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная	-27.1	-20.7	-10.9	1.8	10.3	17.4	21.1	18.7	11.7	1.3	-13.5	-24
температура, °С												
Расчетные периоды	X	X	X	П	T	T	T	T	T	П	X	X
года												
Средняя минимальная	-27.1	-20.7	-10.9	1.8	10.3	17.4	21.1	18.7	11.7	1.3	-13.5	-24
температура, °С												
Расчетные периоды	X	X	X	П	T	T	T	T	T	П	X	X
года												

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	105
Переходный	Апрель; Октябрь;	42
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	105
Всего за год	Январь-Декабрь	252

ИЗАВ 6501

Участок №1; Работа строительной техники, тип - 8 - Дорожная техника на неотапливаемой стоянке, цех №1, площадка №2

Общее описание участка Подтип - Нагрузочный режим (полный) Пробег дорожных машин до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.010

- от наиболее удаленного от выезда места стоянки: Пробег дорожных машин от въезда на стоянку (км)

0.100

- до ближайшего к въезду места стоянки: 0.010 - до наиболее удаленного от въезда места стоянки: 0.100

Характеристики автомобилей/дорожной техники на участке

Марка	Категория	Мощность двигателя	ЭС
Кран самоходный	Колесная	161-260 КВт (220-354 л.с.)	нет
автомКС-35719			
Бульдозер Четра Т-9.01	Гусеничная	101-160 КВт (137-219 л.с.)	нет
Автогрейдер ДЗ-122Б-7	Колесная	101-160 КВт (137-219 л.с.)	нет
Экскаватор Твэкс ЕТ-18-20	Гусеничная	61-100 КВт (83-136 л.с.)	нет
Копровая установка	Гусеничная	161-260 КВт (220-354 л.с.)	нет
УГМГ-16			
Погрузчик фронтальный	Колесная	61-100 КВт (83-136 л.с.)	нет
Вибрационный каток ДУ-85	Колесная	101-160 КВт (137-219 л.с.)	нет
Экскаватор-погрузчик	Колесная	36-60 КВт (49-82 л.с.)	нет
Кран самоходный	Колесная	161-260 КВт (220-354 л.с.)	нет
автомобильный			
Кран самоходный	Колесная	161-260 КВт (220-354 л.с.)	нет
автомобильный			
Кран самоходный	Колесная	161-260 КВт (220-354 л.с.)	нет
автомобильный			

Кран самоходный автомКС-35719: количество по месяцам

Месяц	Количество	Выезжающ	Работающ	Tcym	tдв	tнагр	txx
	в сутки	их за время	их в				
		Тср	течение 30				
			мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Бульдозер Четра Т-9.01: количество по месяцам

Месяц	Количество в сутки	их за время	Работающ их в течение 30	Тсут	tдв	tнагр	txx
		Тср	мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Автогрейдер ДЗ-122Б-7: количество по месяцам

Месяц	Количество	Выезжающ	Работающ	Tcym	tдв	tнагр	txx
	в сутки	их за время	их в				
		Тср	течение 30				
			мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Экскаватор Твэкс ЕТ-18-20 : количество по месяцам

Месяц	Количество	Выезжающ	Работающ	Тсут	tдв	tнагр	txx
	в сутки	их за время	их в				
		Тср	течение 30				
			мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Копровая установка УГМГ-16 : количество по месяцам

Месяц	Количество в сутки	Выезжающ их за время Тср	Работающ их в течение 30 мин.	Тсут	tò6	<i>tнагр</i>	txx
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Погрузчик фронтальный: количество по месяцам

Месяц	Количество в сутки	Выезжающ их за время Тср	Работающ их в течение 30 мин.	Тсут	tòs	<i>tнагр</i>	txx
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Вибрационный каток ДУ-85: количество по месяцам

Месяц	Количество в сутки	Выезжающ их за время Тср	Работающ их в течение 30 мин.	Тсут	tòs	<i>tнагр</i>	txx
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5

Декабрь	1.00	1	0	720	12	13	5

Экскаватор-погрузчик: количество по месяцам

Месяц	Количество в сутки	Выезжающ их за время Тср	Работающ их в течение 30 мин.	Тсут	tòs	<i>tнагр</i>	txx
Январь	1.00	1	<i>мин.</i>	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Кран самоходный автомобильный: количество по месяцам

Месяц	Количество	Выезжающ	Работающ	Tcym	tдв	tнагр	txx
	в сутки	их за время	их в				
		Тср	течение 30				
			мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Кран самоходный автомобильный: количество по месяцам

Месяц	Количество в сутки	Выезжающ их за время Тср			tòs	<i>tнагр</i>	txx
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5

Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Кран самоходный автомобильный: количество по месяцам

Месяц	Количество	,	'	Тсут	tдв	tнагр	txx
	в сутки	их за время Тср	их в течение 30				
			мин.				
Январь	1.00	1	0	720	12	13	5
Февраль	1.00	1	0	720	12	13	5
Март	1.00	1	0	720	12	13	5
Апрель	1.00	1	0	720	12	13	5
Май	1.00	1	0	720	12	13	5
Июнь	1.00	1	0	720	12	13	5
Июль	1.00	1	0	720	12	13	5
Август	1.00	1	0	720	12	13	5
Сентябрь	1.00	1	0	720	12	13	5
Октябрь	1.00	1	0	720	12	13	5
Ноябрь	1.00	1	0	720	12	13	5
Декабрь	1.00	1	0	720	12	13	5

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс
6-ва	вещества	(2/c)	(т/год)
	Оксиды азота (NOx)*	0.4736004	9.278096
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.3788804	7.422477
0304	*Азот (II) оксид (Азота оксид)	0.0615681	1.206152
0328	Углерод (Сажа)	0.1991784	1.321702
0330	Сера диоксид-Ангидрид сернистый	0.0654701	0.846549
0337	Углерод оксид	3.5344935	7.293905
0401	Углеводороды**	0.5019399	1.990845
	В том числе:		
2704	**Бензин (нефтяной, малосернистый)	0.0937778	0.025700
2732	**Керосин	0.4081621	1.965145

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)

Теплый	Кран самоходный автомКС-35719	0.333803
	Бульдозер Четра Т-9.01	0.207081
	Автогрейдер ДЗ-122Б-7	0.206936
	Экскаватор Твэкс ЕТ-18-20	0.128000
	Копровая установка УГМГ-16	0.334037
	Погрузчик фронтальный	0.127911
	Вибрационный каток ДУ-85	0.206936
	Экскаватор-погрузчик	0.077318
	Кран самоходный автомобильный	0.333803
	Кран самоходный автомобильный	0.333803
	Кран самоходный автомобильный	0.333803
	ВСЕГО:	2.623431
Переходный	Кран самоходный автомКС-35719	0.147832
•	Бульдозер Четра Т-9.01	0.091722
	Автогрейдер ДЗ-122Б-7	0.091661
	Экскаватор Твэкс ЕТ-18-20	0.056724
	Копровая установка УГМГ-16	0.147930
	Погрузчик фронтальный	0.056686
	Вибрационный каток ДУ-85	0.091661
	Экскаватор-погрузчик	0.034638
	Кран самоходный автомобильный	0.147832
	Кран самоходный автомобильный	0.147832
	Кран самоходный автомобильный	0.147832
	ВСЕГО:	1.162351
Холодный	Кран самоходный автомКС-35719	0.445896
, ,	Бульдозер Четра Т-9.01	0.276537
	Автогрейдер ДЗ-122Б-7	0.276376
	Экскаватор Твэкс ЕТ-18-20	0.171608
	Копровая установка УГМГ-16	0.446155
	Погрузчик фронтальный	0.171509
	Вибрационный каток ДУ-85	0.276376
	Экскаватор-погрузчик	0.105982
	Кран самоходный автомобильный	0.445896
	Кран самоходный автомобильный	0.445896
	Кран самоходный автомобильный	0.445896
	ВСЕГО:	3.508123
Всего за год		7.293905
7 1		

Максимальный выброс составляет: 3.5344935 г/с. Месяц достижения: Январь.

```
Здесь и далее:
Расчет валовых выбросов производился по формуле:
M_i = (\Sigma (M' + M'') + \Sigma (M_1 \cdot t'_{AB} + 1.3 \cdot M_1 \cdot t'_{Harp} + M_{xx} \cdot t'_{xx})) \cdot N_B \cdot D_p \cdot 10^{-6}, где
М' - выброс вещества в сутки при выезде (г);
М" - выброс вещества в сутки при въезде (г);
\texttt{M'} = \texttt{M}_{\pi} \cdot \texttt{T}_{\pi} + \texttt{M}_{\pi p} \cdot \texttt{T}_{\pi p} + \texttt{M}_{\pi B} \cdot \texttt{T}_{\pi B1} + \texttt{M}_{xx} \cdot \texttt{T}_{xx};
M''=M_{\text{MB.Ten.}} \cdot T_{\text{MB2}}+M_{\text{XX}} \cdot T_{\text{XX}};
N_{\text{B}} - Среднее количество единиц техники данной группы, выезжающих в течение
CYTOK;
Dp - количество дней работы в расчетном периоде.
Расчет максимально разовых выбросов производился по формуле:
G_{i}=\text{Max}\left(\left(M_{\text{T}}\cdot T_{\text{T}}+M_{\text{TP}}\cdot T_{\text{TP}}+M_{\text{AB}}\cdot T_{\text{AB}1}+M_{\text{XX}}\cdot T_{\text{XX}}\right)\cdot N'/T_{\text{CP}},\left(M_{1}\cdot t_{\text{AB}}+1.3\cdot M_{1}\cdot t_{\text{Harp}}+M_{\text{XX}}\cdot t_{\text{XX}}\right)\cdot N''/T_{\text{CP}}\right)
1800) r/c,
С учетом синхронности работы: G_{max}=\Sigma(G_i);
M_{\Pi} - удельный выброс пускового двигателя (г/мин.);
T_{\pi} - время работы пускового двигателя (мин.);
```

```
M_{\text{ПD}} - удельный выброс при прогреве двигателя (г/мин.);
T_{\text{пр}} - время прогрева двигателя (мин.);
M_{\text{дв}}=M_{\text{l}} - пробеговый удельный выброс (г/км);
M_{\text{ЛВ. Теп.}} - пробеговый удельный выброс в теплый период (г/км);
T_{\text{лв}1}=60 \cdot L_1/V_{\text{лв}}=0.330 мин. - среднее время движения при выезде со стоянки;
T_{\text{лв}2}=60 \cdot L_2/V_{\text{лв}}=0.330 мин. - среднее время движения при въезде на стоянку;
L_{1}=(L_{16}+L_{1\pi})/2=0.055 км - средний пробег при выезде со стоянки;
L_2 = (L_{26} + L_{2\pi})/2 = 0.055 км - средний пробег при въезде на стоянку;
M_{xx}- удельный выброс техники на холостом ходу (г/мин.);
T_{xx}=1 мин. - время работы двигателя на холостом ходу;
t_{\text{дв}} - движение техники без нагрузки (мин.);
t_{\text{нагр}} - движение техники с нагрузкой (мин.);
t_{xx}- холостой ход (мин.);
t'_{\text{пв}} = (t_{\text{пв}} \cdot T_{\text{сут}})/30- суммарное время движения без нагрузки всей техники данного
типа в течение рабочего дня (мин.);
t'_{\text{нагр}} = (t_{\text{нагр}} \cdot T_{\text{сут}})/30 - суммарное время движения с нагрузкой всей техники
данного типа в течение рабочего дня (мин.);
```

 $t'_{xx}=(t_{xx}\cdot T_{\text{сут}})/30$ - суммарное время холостого хода для всей техники данного типа в течение рабочего дня (мин.);

 $T_{\text{сут}}$ - среднее время работы всей техники указанного типа в течение суток (мин.); N' - наибольшее количество единиц техники, выезжающей со стоянки в течение времени Tcp, характеризующегося максимальной интенсивностью выезда.

N'' - наибольшее количество единиц техники, работающих одновременно в течение 30 минут.

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г. $T_{cp}=1800$ сек. - среднее время выезда всей техники со стоянки;

Наименован	Mn	Tn	Mnp	Tnp	Мдв	Мдв.те	Vдв	Mxx	Схр	Выброс (г/с)
ue			•	^		n.			•	• , ,
Кран самоходный автомКС-35 719	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	
	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	0.4459257
Бульдозер Четра Т-9.01	35.000	4.0	7.800	45.0	2.550	2.090	5	3.910	да	
	35.000	4.0	7.800	45.0	2.550	2.090	5	3.910	да	0.2758850
Автогрейде р Д3-122Б-7	35.000	4.0	7.800	45.0	2.550	2.090	10	3.910	да	
	35.000	4.0	7.800	45.0	2.550	2.090	10	3.910	да	0.2754175
Экскаватор Твэкс ET-18-20	25.000	4.0	4.800	45.0	1.570	1.290	5	2.400	да	
	25.000	4.0	4.800	45.0	1.570	1.290	5	2.400	да	0.1774646
Копровая установка УГМГ-16	57.000	4.0	12.600	45.0	4.110	3.370	5	6.310	да	
	57.000	4.0	12.600	45.0	4.110	3.370	5	6.310	да	0.4466792
Погрузчик	25.000	4.0	4.800	45.0	1.570	1.290	10	2.400	да	· · · · · · · · · · · · · · · · · · ·

							Ī	1	1	
фронтальны й										
	25.000	4.0	4.800	45.0	1.570	1.290	10	2.400	да	0.1771767
Вибрационн	35.000	4.0	7.800	45.0	2.550	2.090	10	3.910	да	
ый каток ДУ-85										
	35.000	4.0	7.800	45.0	2.550	2.090	10	3.910	да	0.2754175
Экскаватор-погрузчик	23.300	4.0	2.800	45.0	0.940	0.770	10	1.440	да	
1,5	23.300	4.0	2.800	45.0	0.940	0.770	10	1.440	да	0.1227501
Кран самоходный автомобиль ный	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	
	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	0.4459257
Кран самоходный автомобиль ный	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	
	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	0.4459257
Кран самоходный автомобиль ный	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	
	57.000	4.0	12.600	45.0	4.110	3.370	10	6.310	да	0.4459257

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.093882
	Бульдозер Четра Т-9.01	0.058491
	Автогрейдер ДЗ-122Б-7	0.058441
	Экскаватор Твэкс ЕТ-18-20	0.035502
	Копровая установка УГМГ-16	0.093961
	Погрузчик фронтальный	0.035472
	Вибрационный каток ДУ-85	0.058441
	Экскаватор-погрузчик	0.021906
	Кран самоходный автомобильный	0.093882
	Кран самоходный автомобильный	0.093882
	Кран самоходный автомобильный	0.093882
	ВСЕГО:	0.737744
Переходный	Кран самоходный автомКС-35719	0.040859
	Бульдозер Четра Т-9.01	0.025369
	Автогрейдер ДЗ-122Б-7	0.025348
	Экскаватор Твэкс ЕТ-18-20	0.015286
	Копровая установка УГМГ-16	0.040892
	Погрузчик фронтальный	0.015274
	Вибрационный каток ДУ-85	0.025348
	Экскаватор-погрузчик	0.009651
	Кран самоходный автомобильный	0.040859
	Кран самоходный автомобильный	0.040859
	Кран самоходный автомобильный	0.040859

	ВСЕГО:	0.320606
Холодный	Кран самоходный автомКС-35719	0.118714
	Бульдозер Четра Т-9.01	0.073694
	Автогрейдер ДЗ-122Б-7	0.073640
	Экскаватор Твэкс ЕТ-18-20	0.044504
	Копровая установка УГМГ-16	0.118801
	Погрузчик фронтальный	0.044472
	Вибрационный каток ДУ-85	0.073640
	Экскаватор-погрузчик	0.028888
	Кран самоходный автомобильный	0.118714
	Кран самоходный автомобильный	0.118714
	Кран самоходный автомобильный	0.118714
	ВСЕГО:	0.932495
Всего за год		1.990845

Максимальный выброс составляет: 0.5019399 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Мдв	Мдв.те	Vдв	Mxx	Схр	Выброс (г/с)
ue			•	1		n.			•	
Кран	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	
самоходный										
автомКС-35										
719										
	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	0.0623845
Бульдозер	2.900	4.0	1.270	45.0	0.850	0.710	5	0.490	да	
Четра										
T-9.01										
	2.900	4.0	1.270	45.0	0.850	0.710	5	0.490	да	0.0387783
Автогрейде р ДЗ-122Б-7	2.900	4.0	1.270	45.0	0.850	0.710	10	0.490	да	
	2.900	4.0	1.270	45.0	0.850	0.710	10	0.490	да	0.0386225
Экскаватор	2.100	4.0	0.780	45.0	0.510	0.430	5	0.300	да	
Твэкс										
ET-18-20										
	2.100	4.0	0.780	45.0	0.510	0.430	5	0.300	да	0.0245203
Копровая	4.700	4.0	2.050	45.0	1.370	1.140	5	0.790	да	
установка										
УГМГ-16							_			
	4.700	4.0	2.050	45.0	1.370	1.140	5	0.790	да	0.0626357
Погрузчик	2.100	4.0	0.780	45.0	0.510	0.430	10	0.300	да	
фронтальны										
й	2.100	4.0	0.790	45.0	0.510	0.420	10	0.200		0.0244269
Вибрационн	2.100	4.0	0.780 1.270	45.0 45.0	0.510 0.850	0.430 0.710	10 10	0.300	да	0.0244268
ый каток	2.900	4.0	1.2/0	43.0	0.830	0.710	10	0.490	да	
ДУ-85										
Д3-63	2.900	4.0	1.270	45.0	0.850	0.710	10	0.490	да	0.0386225
Экскаватор-	5.800	4.0	0.470	45.0	0.310	0.710	10	0.180	да	0.0300223
погрузчик	5.000	٦.0	0.470	75.0	0.510	0.200	10	0.100	да	
noi pys ink	5.800	4.0	0.470	45.0	0.310	0.260	10	0.180	да	0.0247957
Кран	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	
самоходный	, , ,				2.0					

автомобиль										
ный	4.700	4.0	2.050	45.0	1 270	1 1 40	10	0.700		0.0622045
	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	0.0623845
Кран	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	
самоходный										
автомобиль										
ный										
	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	0.0623845
Кран	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	
самоходный										
автомобиль										
ный										
	4.700	4.0	2.050	45.0	1.370	1.140	10	0.790	да	0.0623845

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.488653
	Бульдозер Четра Т-9.01	0.303109
	Автогрейдер ДЗ-122Б-7	0.302831
	Экскаватор Твэкс ЕТ-18-20	0.186656
	Копровая установка УГМГ-16	0.489102
	Погрузчик фронтальный	0.186484
	Вибрационный каток ДУ-85	0.302831
	Экскаватор-погрузчик	0.112519
	Кран самоходный автомобильный	0.488653
	Кран самоходный автомобильный	0.488653
	Кран самоходный автомобильный	0.488653
	ВСЕГО:	3.838145
Переходный	Кран самоходный автомКС-35719	0.196403
	Бульдозер Четра Т-9.01	0.121901
	Автогрейдер ДЗ-122Б-7	0.121790
	Экскаватор Твэкс ЕТ-18-20	0.075018
	Копровая установка УГМГ-16	0.196582
	Погрузчик фронтальный	0.074949
	Вибрационный каток ДУ-85	0.121790
	Экскаватор-погрузчик	0.045245
	Кран самоходный автомобильный	0.196403
	Кран самоходный автомобильный	0.196403
	Кран самоходный автомобильный	0.196403
	ВСЕГО:	1.542888
Холодный	Кран самоходный автомКС-35719	0.496102
	Бульдозер Четра Т-9.01	0.307873
	Автогрейдер ДЗ-122Б-7	0.307595
	Экскаватор Твэкс ЕТ-18-20	0.189464
	Копровая установка УГМГ-16	0.496550
	Погрузчик фронтальный	0.189293
	Вибрационный каток ДУ-85	0.307595
	Экскаватор-погрузчик	0.114287
	Кран самоходный автомобильный	0.496102
	Кран самоходный автомобильный	0.496102
	Кран самоходный автомобильный	0.496102

	ВСЕГО:	3.897064
Всего за год		9.278096

Максимальный выброс составляет: 0.4736004 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Мдв	Мдв.те	Vдв	Mxx	Схр	Выброс (г/с)
ue						n.				
Кран самоходный автомКС-35 719	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	
	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	0.0596417
Бульдозер Четра Т-9.01	3.400	4.0	1.170	45.0	4.010	4.010	5	0.780	да	
	3.400	4.0	1.170	45.0	4.010	4.010	5	0.780	да	0.0387092
Автогрейде р Д3-122Б-7	3.400	4.0	1.170	45.0	4.010	4.010	10	0.780	да	
	3.400	4.0	1.170	45.0	4.010	4.010	10	0.780	да	0.0379741
Экскаватор Твэкс ET-18-20	1.700	4.0	0.720	45.0	2.470	2.470	5	0.480	да	
	1.700	4.0	0.720	45.0	2.470	2.470	5	0.480	да	0.0229501
Копровая установка УГМГ-16	4.500	4.0	1.910	45.0	6.470	6.470	5	1.270	да	
	4.500	4.0	1.910	45.0	6.470	6.470	5	1.270	да	0.0608279
Погрузчик фронтальны й	1.700	4.0	0.720	45.0	2.470	2.470	10	0.480	да	
	1.700	4.0	0.720	45.0	2.470	2.470	10	0.480	да	0.0224973
Вибрационн ый каток ДУ-85	3.400	4.0	1.170	45.0	4.010	4.010	10	0.780	да	
	3.400	4.0	1.170	45.0	4.010	4.010	10	0.780	да	0.0379741
Экскаватор-погрузчик	1.200	4.0	0.440	45.0	1.490	1.490	10	0.290	да	
	1.200	4.0	0.440	45.0	1.490	1.490	10	0.290	да	0.0141009
Кран самоходный автомобиль ный	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	
	4.500	4.0	1.910	45.0	6.470		10	1.270	да	0.0596417
Кран самоходный автомобиль ный	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	
	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	0.0596417
Кран самоходный автомобиль ный	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	

	4.500	4.0	1 0 1 0	450	(470	(470	1.0	1 270		0.0506415
	4.500	4.0	1.910	45.0	6.470	6.470	10	1.270	да	0.0596417
	7.500	7.0	1.710	73.0	0.770	0.770	10	1.2/0	да	0.0370417

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.054699
	Бульдозер Четра Т-9.01	0.034137
	Автогрейдер ДЗ-122Б-7	0.034106
	Экскаватор Твэкс ЕТ-18-20	0.020482
	Копровая установка УГМГ-16	0.054749
	Погрузчик фронтальный	0.020463
	Вибрационный каток ДУ-85	0.034106
	Экскаватор-погрузчик	0.012913
	Кран самоходный автомобильный	0.054699
	Кран самоходный автомобильный	0.054699
	Кран самоходный автомобильный	0.054699
	ВСЕГО:	0.429755
Переходный	Кран самоходный автомКС-35719	0.029441
•	Бульдозер Четра Т-9.01	0.018244
	Автогрейдер ДЗ-122Б-7	0.018229
	Экскаватор Твэкс ЕТ-18-20	0.011156
	Копровая установка УГМГ-16	0.029465
	Погрузчик фронтальный	0.011147
	Вибрационный каток ДУ-85	0.018229
	Экскаватор-погрузчик	0.006819
	Кран самоходный автомобильный	0.029441
	Кран самоходный автомобильный	0.029441
	Кран самоходный автомобильный	0.029441
	ВСЕГО:	0.231056
Холодный	Кран самоходный автомКС-35719	0.084257
. ,	Бульдозер Четра Т-9.01	0.052132
	Автогрейдер ДЗ-122Б-7	0.052093
	Экскаватор Твэкс ЕТ-18-20	0.031862
	Копровая установка УГМГ-16	0.084320
	Погрузчик фронтальный	0.031839
	Вибрационный каток ДУ-85	0.052093
	Экскаватор-погрузчик	0.019525
	Кран самоходный автомобильный	0.084257
	Кран самоходный автомобильный	0.084257
	Кран самоходный автомобильный	0.084257
	ВСЕГО:	0.660892
Всего за год		1.321702

Максимальный выброс составляет: 0.1991784 г/с. Месяц достижения: Январь.

Наименован ие	Mn	Tn	Mnp	Tnp	Мдв	Мдв.те n.	Vдв	Mxx	Схр	Выброс (г/с)
Кран	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	

самоходный автомКС-35										
719										
/1/	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	0.0257924
Бульдозер	0.000	4.0	0.600	45.0	0.670	0.450	5	0.100	да	0.0237721
Четра	0.000	1.0	0.000	15.0	0.070	0.150		0.100	да	
T-9.01										
	0.000	4.0	0.600	45.0	0.670	0.450	5	0.100	да	0.0153012
Автогрейде	0.000	4.0	0.600	45.0	0.670	0.450	10	0.100	да	
р ДЗ-122Б-7										
	0.000	4.0	0.600	45.0	0.670	0.450	10	0.100	да	0.0151784
Экскаватор	0.000	4.0	0.360	45.0	0.410	0.270	5	0.060	да	
Твэкс										
ET-18-20	0.000		0.0.0	4.5.0	0.440		_	0.050		0.000100
7.0	0.000	4.0	0.360	45.0	0.410	0.270	5	0.060	да	0.0091837
Копровая	0.000	4.0	1.020	45.0	1.080	0.720	5	0.170	да	
установка УГМГ-16										
y1 W11 -10	0.000	4.0	1.020	45.0	1.080	0.720	5	0.170	70	0.0259904
Погрузчик	0.000	4.0	0.360	45.0 45.0	0.410	0.720	10	0.170	да	0.0239904
фронтальны	0.000	4.0	0.300	45.0	0.410	0.270	10	0.000	да	
й										
11	0.000	4.0	0.360	45.0	0.410	0.270	10	0.060	да	0.0091085
Вибрационн	0.000	4.0	0.600	45.0	0.670	0.450	10	0.100	да	0.0071002
ый каток	0.000		0.000		0.0,0	01.00	10	0.100	7	
ДУ-85										
,	0.000	4.0	0.600	45.0	0.670	0.450	10	0.100	да	0.0151784
Экскаватор-	0.000	4.0	0.240	45.0	0.250	0.170	10	0.040	да	
погрузчик										
	0.000	4.0	0.240	45.0	0.250	0.170	10	0.040	да	0.0060681
Кран	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	
самоходный										
автомобиль										
ный	0.000	4.0	1.020	45.0	1 000	0.730	10	0.170		0.0257024
T.C.	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	0.0257924
Кран	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	
самоходный автомобиль										
ный										
пыи	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	0.0257924
Кран	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	0.0237724
самоходный	0.000	7.0	1.020	15.0	1.000	0.720	10	0.170	да	
автомобиль										
ный										
	0.000	4.0	1.020	45.0	1.080	0.720	10	0.170	да	0.0257924

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.040443
	Бульдозер Четра Т-9.01	0.024709
	Автогрейдер ДЗ-122Б-7	0.024687

	Экскаватор Твэкс ЕТ-18-20	0.015131
	Копровая установка УГМГ-16	0.040478
	Погрузчик фронтальный	0.015118
	Вибрационный каток ДУ-85	0.024687
	Экскаватор-погрузчик	0.009506
	Кран самоходный автомобильный	0.040443
	Кран самоходный автомобильный	0.040443
	Кран самоходный автомобильный	0.040443
	ВСЕГО:	0.316087
Переходный	Кран самоходный автомКС-35719	0.017892
•	Бульдозер Четра Т-9.01	0.010851
	Автогрейдер ДЗ-122Б-7	0.010842
	Экскаватор Твэкс ЕТ-18-20	0.006569
	Копровая установка УГМГ-16	0.017907
	Погрузчик фронтальный	0.006563
	Вибрационный каток ДУ-85	0.010842
	Экскаватор-погрузчик	0.004252
	Кран самоходный автомобильный	0.017892
	Кран самоходный автомобильный	0.017892
	Кран самоходный автомобильный	0.017892
	ВСЕГО:	0.139393
Холодный	Кран самоходный автомКС-35719	0.050186
	Бульдозер Четра Т-9.01	0.030456
	Автогрейдер ДЗ-122Б-7	0.030432
	Экскаватор Твэкс ЕТ-18-20	0.018435
	Копровая установка УГМГ-16	0.050225
	Погрузчик фронтальный	0.018421
	Вибрационный каток ДУ-85	0.030432
	Экскаватор-погрузчик	0.011926
	Кран самоходный автомобильный	0.050186
	Кран самоходный автомобильный	0.050186
	Кран самоходный автомобильный	0.050186
	ВСЕГО:	0.391070
Всего за год		0.846549

Максимальный выброс составляет: 0.0654701 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Мдв	Мдв.те	Vдв	Mxx	Схр	Выброс (г/с)
ue						n.				
Кран	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	
самоходный										
автомКС-35										
719										
	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	0.0082155
Бульдозер	0.058	4.0	0.200	45.0	0.380	0.310	5	0.160	да	
Четра										
T-9.01										
	0.058	4.0	0.200	45.0	0.380	0.310	5	0.160	да	0.0053571
Автогрейде	0.058	4.0	0.200	45.0	0.380	0.310	10	0.160	да	
р ДЗ-122Б-7										
	0.058	4.0	0.200	45.0	0.380	0.310	10	0.160	да	0.0052874

									-	
Экскаватор	0.042	4.0	0.120	45.0	0.230	0.190	5	0.097	да	
Твэкс										
ET-18-20										
	0.042	4.0	0.120	45.0	0.230	0.190	5	0.097	да	0.0032316
Копровая	0.095	4.0	0.310	45.0	0.630	0.510	5	0.250	да	
установка										
УГМГ-16										
	0.095	4.0	0.310	45.0	0.630	0.510	5	0.250	да	0.0083310
Погрузчик	0.042	4.0	0.120	45.0	0.230	0.190	10	0.097	да	
фронтальны										
й										
	0.042	4.0	0.120	45.0	0.230	0.190	10	0.097	да	0.0031894
Вибрационн	0.058	4.0	0.200	45.0	0.380	0.310	10	0.160	да	
ый каток										
ДУ-85										
	0.058	4.0	0.200	45.0	0.380	0.310	10	0.160	да	0.0052874
Экскаватор-	0.029	4.0	0.072	45.0	0.150	0.120	10	0.058	да	
погрузчик										
	0.029	4.0	0.072	45.0	0.150	0.120	10	0.058	да	0.0019242
Кран	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	
самоходный										
автомобиль										
ный										
	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	0.0082155
Кран	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	
самоходный										
автомобиль										
ный										
	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	0.0082155
Кран	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	
самоходный										
автомобиль										
ный										
	0.095	4.0	0.310	45.0	0.630	0.510	10	0.250	да	0.0082155

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.390923
	Бульдозер Четра Т-9.01	0.242487
	Автогрейдер ДЗ-122Б-7	0.242265
	Экскаватор Твэкс ЕТ-18-20	0.149324
	Копровая установка УГМГ-16	0.391281
	Погрузчик фронтальный	0.149188
	Вибрационный каток ДУ-85	0.242265
	Экскаватор-погрузчик	0.090015
	Кран самоходный автомобильный	0.390923
	Кран самоходный автомобильный	0.390923
	Кран самоходный автомобильный	0.390923
	ВСЕГО:	3.070516

Переходный	Кран самоходный автомКС-35719	0.157122
	Бульдозер Четра Т-9.01	0.097521
	Автогрейдер ДЗ-122Б-7	0.097432
	Экскаватор Твэкс ЕТ-18-20	0.060014
	Копровая установка УГМГ-16	0.157266
	Погрузчик фронтальный	0.059959
	Вибрационный каток ДУ-85	0.097432
	Экскаватор-погрузчик	0.036196
	Кран самоходный автомобильный	0.157122
	Кран самоходный автомобильный	0.157122
	Кран самоходный автомобильный	0.157122
	ВСЕГО:	1.234310
Холодный	Кран самоходный автомКС-35719	0.396881
	Бульдозер Четра Т-9.01	0.246299
	Автогрейдер ДЗ-122Б-7	0.246076
	Экскаватор Твэкс ЕТ-18-20	0.151571
	Копровая установка УГМГ-16	0.397240
	Погрузчик фронтальный	0.151434
	Вибрационный каток ДУ-85	0.246076
	Экскаватор-погрузчик	0.091429
	Кран самоходный автомобильный	0.396881
	Кран самоходный автомобильный	0.396881
	Кран самоходный автомобильный	0.396881
	ВСЕГО:	3.117651
Всего за год		7.422477

Максимальный выброс составляет: 0.3788804 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Кран самоходный автомКС-35719	0.063525
	Бульдозер Четра Т-9.01	0.039404
	Автогрейдер ДЗ-122Б-7	0.039368
	Экскаватор Твэкс ЕТ-18-20	0.024265
	Копровая установка УГМГ-16	0.063583
	Погрузчик фронтальный	0.024243
	Вибрационный каток ДУ-85	0.039368
	Экскаватор-погрузчик	0.014627
	Кран самоходный автомобильный	0.063525
	Кран самоходный автомобильный	0.063525
	Кран самоходный автомобильный	0.063525
	ВСЕГО:	0.498959
Переходный	Кран самоходный автомКС-35719	0.025532
	Бульдозер Четра Т-9.01	0.015847
	Автогрейдер ДЗ-122Б-7	0.015833
	Экскаватор Твэкс ЕТ-18-20	0.009752
	Копровая установка УГМГ-16	0.025556
	Погрузчик фронтальный	0.009743
	Вибрационный каток ДУ-85	0.015833
	Экскаватор-погрузчик	0.005882

	Кран самоходный автомобильный	0.025532
	Кран самоходный автомобильный	0.025532
	Кран самоходный автомобильный	0.025532
	ВСЕГО:	0.200575
Холодный	Кран самоходный автомКС-35719	0.064493
	Бульдозер Четра Т-9.01	0.040024
	Автогрейдер ДЗ-122Б-7	0.039987
	Экскаватор Твэкс ЕТ-18-20	0.024630
	Копровая установка УГМГ-16	0.064551
	Погрузчик фронтальный	0.024608
	Вибрационный каток ДУ-85	0.039987
	Экскаватор-погрузчик	0.014857
	Кран самоходный автомобильный	0.064493
	Кран самоходный автомобильный	0.064493
	Кран самоходный автомобильный	0.064493
	ВСЕГО:	0.506618
Всего за год		1.206152

Максимальный выброс составляет: 0.0615681 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)			
Теплый	Кран самоходный автомКС-35719	0.000494			
	Бульдозер Четра Т-9.01	0.000304			
	Автогрейдер ДЗ-122Б-7	0.000304			
	Экскаватор Твэкс ЕТ-18-20	0.000220			
	Копровая установка УГМГ-16	0.000494			
	Погрузчик фронтальный	0.000220			
	Вибрационный каток ДУ-85	0.000304			
	Экскаватор-погрузчик	0.000609			
	Кран самоходный автомобильный	0.000494			
	Кран самоходный автомобильный	0.000494			
	Кран самоходный автомобильный	0.000494			
	ВСЕГО:	0.004431			
Переходный	Кран самоходный автомКС-35719	0.000395			
	Бульдозер Четра Т-9.01	0.000244			
	Автогрейдер ДЗ-122Б-7	0.000244			
	Экскаватор Твэкс ЕТ-18-20	0.000176			
	Копровая установка УГМГ-16	0.000395			
	Погрузчик фронтальный	0.000176			
	Вибрационный каток ДУ-85	0.000244			
	Экскаватор-погрузчик	0.000487			
	Кран самоходный автомобильный	0.000395			
	Кран самоходный автомобильный	0.000395			
	Кран самоходный автомобильный	0.000395			
	ВСЕГО:	0.003545			
Холодный	Кран самоходный автомКС-35719	0.001974			
	Бульдозер Четра Т-9.01	0.001218			
	Автогрейдер ДЗ-122Б-7	0.001218			
	Экскаватор Твэкс ЕТ-18-20	0.000882			

	Копровая установка УГМГ-16	0.001974
	Погрузчик фронтальный	0.000882
	Вибрационный каток ДУ-85	0.001218
	Экскаватор-погрузчик	0.002436
	Кран самоходный автомобильный	0.001974
	Кран самоходный автомобильный	0.001974
	Кран самоходный автомобильный	0.001974
	ВСЕГО:	0.017724
Всего за год		0.025700

Максимальный выброс составляет: 0.0937778 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	%%	Mnp	Tnp	Мдв	Мдв.т	Vдв	Mxx	%%	Схр	Выброс (г/с)
ue			пуск.	T	T		en.			двиг.	T. T	,
Кран самоходный автомКС-35 719	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	
	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	0.0104444
Бульдозер Четра Т-9.01	2.900	4.0	100.0	1.270	45.0	0.850	0.710	5	0.490	0.0	да	
	2.900	4.0	100.0	1.270	45.0	0.850	0.710	5	0.490	0.0	да	0.0064444
Автогрейде р ДЗ-122Б-7	2.900	4.0	100.0	1.270	45.0	0.850	0.710	10	0.490	0.0	да	
	2.900	4.0	100.0	1.270	45.0	0.850	0.710	10	0.490	0.0	да	0.0064444
Экскаватор Твэкс ET-18-20	2.100	4.0	100.0	0.780	45.0	0.510	0.430	5	0.300	0.0	да	
	2.100	4.0	100.0	0.780	45.0	0.510	0.430	5	0.300	0.0	да	0.0046667
Копровая установка УГМГ-16	4.700	4.0	100.0	2.050	45.0	1.370	1.140	5	0.790	0.0	да	
	4.700	4.0	100.0	2.050	45.0	1.370	1.140	5	0.790	0.0	да	0.0104444
Погрузчик фронтальны й	2.100	4.0	100.0	0.780	45.0	0.510	0.430	10	0.300	0.0	да	
	2.100	4.0	100.0	0.780	45.0		0.430	10	0.300	0.0	да	0.0046667
Вибрационн ый каток ДУ-85	2.900	4.0	100.0	1.270	45.0	0.850	0.710	10	0.490	0.0	да	
	2.900	4.0	100.0	1.270	45.0	0.850	0.710	10	0.490	0.0	да	0.0064444
Экскаватор-погрузчик	5.800	4.0	100.0	0.470	45.0	0.310	0.260	10	0.180	0.0	да	
	5.800	4.0	100.0	0.470	45.0		0.260	10	0.180	0.0	да	0.0128889
Кран самоходный автомобиль ный	4.700	4.0	100.0	2.050		1.370			0.790	0.0	да	
	4.700	4.0			45.0	1.370	1.140	10	0.790	0.0	да	0.0104444
Кран самоходный	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	

автомобиль ный												
	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	0.0104444
Кран	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	
самоходный автомобиль												
ный												
	4.700	4.0	100.0	2.050	45.0	1.370	1.140	10	0.790	0.0	да	0.0104444

Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период	Марка автомобиля	Валовый выброс			
года	или дорожной техники	(тонн/период)			
		(тонн/год)			
Теплый	Кран самоходный автомКС-35719	0.093389			
	Бульдозер Четра Т-9.01	0.058186			
	Автогрейдер ДЗ-122Б-7	0.058137			
	Экскаватор Твэкс ЕТ-18-20	0.035282			
	Копровая установка УГМГ-16	0.093468			
	Погрузчик фронтальный	0.035252			
	Вибрационный каток ДУ-85	0.058137			
	Экскаватор-погрузчик	0.021297			
	Кран самоходный автомобильный	0.093389			
	Кран самоходный автомобильный	0.093389			
	Кран самоходный автомобильный	0.093389			
	ВСЕГО:	0.733313			
Переходный	Кран самоходный автомКС-35719	0.040465			
-	Бульдозер Четра Т-9.01	0.025125			
	Автогрейдер ДЗ-122Б-7	0.025105			
	Экскаватор Твэкс ЕТ-18-20	0.015110			
	Копровая установка УГМГ-16	0.040497			
	Погрузчик фронтальный	0.015098			
	Вибрационный каток ДУ-85	0.025105			
	Экскаватор-погрузчик	0.009164			
	Кран самоходный автомобильный	0.040465			
	Кран самоходный автомобильный	0.040465			
	Кран самоходный автомобильный	0.040465			
	ВСЕГО:	0.317062			
Холодный	Кран самоходный автомКС-35719	0.116740			
	Бульдозер Четра Т-9.01	0.072476			
	Автогрейдер ДЗ-122Б-7	0.072422			
	Экскаватор Твэкс ЕТ-18-20	0.043622			
	Копровая установка УГМГ-16	0.116827			
	Погрузчик фронтальный	0.043590			
	Вибрационный каток ДУ-85	0.072422			
	Экскаватор-погрузчик	0.026452			
	Кран самоходный автомобильный	0.116740			
	Кран самоходный автомобильный	0.116740			
	Кран самоходный автомобильный	0.116740			
	ВСЕГО:	0.914771			
Всего за год		1.965145			

Максимальный выброс составляет: 0.4081621 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Mn	Tn	%%	Mnp	Tnp	Мдв	Мдв.т	Vдв	Mxx	%%	Схр	Выброс (г/с)
ue	1,116	111	пуск.	ППР	T iip	1/100	en.	, 00	1713000	двиг.	Смр	Botopoe (e/e)
Кран самоходный автомКС-35	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	
719	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	0.0519401
Бульдозер Четра Т-9.01	2.900	4.0	0.0	1.270	45.0	0.850	0.710	5	0.490	100.0	да	0.0317401
	2.900	4.0	0.0	1.270	45.0	0.850	0.710	5	0.490	100.0	да	0.0323339
Автогрейде р ДЗ-122Б-7	2.900	4.0	0.0	1.270	45.0	0.850	0.710	10	0.490	100.0	да	
	2.900	4.0	0.0	1.270	45.0			10	0.490		да	0.0321781
Экскаватор Твэкс ET-18-20	2.100	4.0	0.0	0.780	45.0	0.510	0.430	5	0.300	100.0	да	
	2.100	4.0	0.0	0.780	45.0	0.510	0.430	5	0.300	100.0	да	0.0198537
Копровая установка УГМГ-16	4.700	4.0	0.0	2.050	45.0	1.370	1.140	5	0.790	100.0	да	
	4.700	4.0	0.0	2.050	45.0		1.140	5	0.790	100.0	да	0.0521912
Погрузчик фронтальны й	2.100	4.0	0.0	0.780	45.0	0.510	0.430	10	0.300	100.0	да	
	2.100	4.0	0.0	0.780	45.0	0.510	0.430	10	0.300	100.0	да	0.0197602
Вибрационн ый каток ДУ-85	2.900	4.0	0.0	1.270	45.0	0.850	0.710	10	0.490	100.0	да	
,	2.900	4.0	0.0	1.270	45.0	0.850	0.710	10	0.490	100.0	да	0.0321781
Экскаватор-погрузчик	5.800	4.0	0.0	0.470	45.0	0.310	0.260	10	0.180	100.0	да	
	5.800	4.0	0.0	0.470	45.0		0.260	10	0.180		да	0.0119068
Кран самоходный автомобиль ный	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	
	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	0.0519401
Кран самоходный автомобиль ный	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	
	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	0.0519401
Кран самоходный автомобиль ный	4.700	4.0	0.0	2.050	45.0		1.140	10	0.790	100.0	да	
	4.700	4.0	0.0	2.050	45.0	1.370	1.140	10	0.790	100.0	да	0.0519401

ИЗАВ 6502

Участок N2; Транспорт, тип - 1 - Открытая или закрытая неотапливаемая стоянка, цех N2, площадка N2

Общее описание участка

Пробег автомобиля до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.010 - от наиболее удаленного от выезда места стоянки: 0.100

Пробег автомобиля от въезда на стоянку (км)

- до ближайшего к въезду места стоянки: 0.010 - до наиболее удаленного от въезда места стоянки: 0.100

- среднее время выезда (мин.): 30.0

Характеристики автомобилей/дорожной техники на участке

Марка	•	Место пр-ва	О/Г/К	Тип двиг.	Код		Нейтрал	
автомобиля					топл.	роль	изатор	тный
Автобетоно	Грузовой	СНГ	5	Диз.	3	нет	нет	-
насоАБН-47								
Камаз65201								
Автобетоно	Грузовой	СНГ	5	Диз.	3	нет	нет	-
смеситель								
АБС-9ДА								
Автом.	Грузовой	СНГ	1	Диз.	3	нет	нет	-
телескоп								
гидроподъе								
мник								
Бортовой	Грузовой	СНГ	4	Диз.	3	нет	нет	-
автомобиль								
Камаз53215								
Седельный	Грузовой	СНГ	4	Диз.	3	нет	нет	-
тягач Камаз								
65116								
Бортовой	Грузовой	СНГ	5	Диз.	3	нет	нет	-
полуприцеп								
НЕФАЗ933								
4								
Самосвал	Грузовой	СНГ	4	Диз.	3	нет	нет	-
Камаз								
55111								

АвтобетононасоАБН-47Камаз65201: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1

Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Автобетоносмеситель АБС-9ДА: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
		время 1ср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Автом. телескоп гидроподъемник: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Бортовой автомобиль Камаз53215: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	2.00	1
Февраль	2.00	1
Март	2.00	1
Апрель	2.00	1
Май	2.00	1
Июнь	2.00	1
Июль	2.00	1
Август	2.00	1
Сентябрь	2.00	1
Октябрь	2.00	1
Ноябрь	2.00	1
Декабрь	2.00	1

Седельный тягач Камаз 65116: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	1
Февраль	3.00	1
Март	3.00	1
Апрель	3.00	1
Май	3.00	1
Июнь	3.00	1
Июль	3.00	1
Август	3.00	1
Сентябрь	3.00	1
Октябрь	3.00	1
Ноябрь	3.00	1
Декабрь	3.00	1

Бортовой полуприцеп НЕФАЗ9334 : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	1
Февраль	3.00	1
Март	3.00	1
Апрель	3.00	1
Май	3.00	1
Июнь	3.00	1
Июль	3.00	1
Август	3.00	1
Сентябрь	3.00	1
Октябрь	3.00	1
Ноябрь	3.00	1
Декабрь	3.00	1

Самосвал Камаз 55111: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	2.00	1
Февраль	2.00	1
Март	2.00	1
Апрель	2.00	1
Май	2.00	1
Июнь	2.00	1
Июль	2.00	1
Август	2.00	1
Сентябрь	2.00	1
Октябрь	2.00	1
Ноябрь	2.00	1
Декабрь	2.00	1

Выбросы участка

Г	$V_{\alpha \lambda}$	Названия	Μανα αμόποα	Rangaliji alihnaa
Ш	Koo	Название	Макс, выброс	Валовыи выброс

в-ва	вещества	(z/c)	(т/год)
	Оксиды азота (NOx)*	0.2142686	0.086155
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.1714149	0.068924
0304	*Азот (II) оксид (Азота оксид)	0.0278549	0.011200
0328	Углерод (Сажа)	0.0168969	0.006377
0330	Сера диоксид-Ангидрид сернистый	0.0152095	0.006477
0337	Углерод оксид	0.8717275	0.334152
0401	Углеводороды**	0.1201950	0.045810
	В том числе:		
2732	**Керосин	0.1201950	0.045810

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.001956
	Автобетоносмеситель АБС-9ДА	0.001956
	Автом. телескоп гидроподъемник	0.000825
	Бортовой автомобиль Камаз53215	0.003879
	Седельный тягач Камаз 65116	0.005818
	Бортовой полуприцеп НЕФАЗ9334	0.005867
	Самосвал Камаз 55111	0.003879
	ВСЕГО:	0.024179
Переходный	АвтобетононасоАБН-47Камаз65201	0.002140
	Автобетоносмеситель АБС-9ДА	0.002140
	Автом. телескоп гидроподъемник	0.000623
	Бортовой автомобиль Камаз53215	0.004266
	Седельный тягач Камаз 65116	0.006399
	Бортовой полуприцеп НЕФАЗ9334	0.006420
	Самосвал Камаз 55111	0.004266
	ВСЕГО:	0.026253
Холодный	АвтобетононасоАБН-47Камаз65201	0.023092
	Автобетоносмеситель АБС-9ДА	0.023092
	Автом. телескоп гидроподъемник	0.006749
	Бортовой автомобиль Камаз53215	0.046146
	Седельный тягач Камаз 65116	0.069219
	Бортовой полуприцеп НЕФАЗ9334	0.069276
	Самосвал Камаз 55111	0.046146
	ВСЕГО:	0.283720
Всего за год		0.334152

Максимальный выброс составляет: 0.8717275 г/с. Месяц достижения: Январь.

```
Расчет валовых выбросов производился по формуле:
M_{\text{i}} = \Sigma ( (M_1 + M_2) \cdot N_{\text{B}} \cdot D_{\text{p}} \cdot 10^{-6}), где
M_1 - выброс вещества в день при выезде (г);
M_2 - выброс вещества в день при въезде (г);
M_1=M_{\text{ND}} \cdot T_{\text{ND}} \cdot K_9 \cdot K_{\text{HTDND}} + M_1 \cdot L_1 \cdot K_{\text{HTD}} + M_{\text{XX}} \cdot T_{\text{XX}} \cdot K_9 \cdot K_{\text{HTD}};
Для маршрутных автобусов при температуре ниже -10 град.С:
\texttt{M}_1 \texttt{=} \texttt{M}_{\texttt{\Pi}\texttt{p}} \cdot (\texttt{8+15} \cdot \texttt{n}) \cdot \texttt{K}_{\texttt{9}} \cdot \texttt{K}_{\texttt{H}\texttt{T}\texttt{p}} \texttt{\Pi}\texttt{p} + \texttt{M}_1 \cdot \texttt{L}_1 \cdot \texttt{K}_{\texttt{H}\texttt{T}\texttt{p}} + \texttt{M}_{\texttt{x}\texttt{x}} \cdot \texttt{T}_{\texttt{x}\texttt{x}} \cdot \texttt{K}_{\texttt{9}} \cdot \texttt{K}_{\texttt{H}\texttt{T}\texttt{p}} \text{,}
где n - число периодических прогревов в течение суток;
M_2=M_{1\text{Ten}} \cdot L_2 \cdot K_{\text{HTD}} + M_{XX} \cdot T_{XX} \cdot K_9 \cdot K_{\text{HTD}};
N_B - Среднее количество автомобилей данной группы, выезжающих в течение суток;
D_{p} - количество дней работы в расчетном периоде.
Расчет максимально разовых выбросов производился по формуле:
G_i = \left( M_{\text{np}} \cdot T_{\text{np}} \cdot K_{\text{9}} \cdot K_{\text{HTP}\Pi p} + M_1 \cdot L_1 \cdot K_{\text{HTP}} + M_{\text{XX}} \cdot T_{\text{XX}} \cdot K_{\text{9}} \cdot K_{\text{HTP}} \right) \cdot N' / T_{\text{cp}} \text{ r/c} \quad (*) \text{,}
С учетом синхронности работы: G_{max}=\Sigma(G_i);
M_{\text{пр}} - удельный выброс при прогреве двигателя (г/мин.);
T_{\text{пр}} - время прогрева двигателя (мин.);
Кэ - коэффициент, учитывающий снижение выброса при проведении экологического
контроля;
K_{\text{HTD}\Pi\text{D}} - коэффициент, учитывающий снижение выброса при прогреве двигателя при
установленном нейтрализаторе;
M_1 - пробеговый удельный выброс (г/км);
M_{1\text{тел}}. - пробеговый удельный выброс в теплый период (г/км);
L_1 = (L_{16} + L_{1д})/2 = 0.055 км - средний пробег при выезде со стоянки;
L_2 = (L_{26} + L_{2\pi})/2 = 0.055 км - средний пробег при въезде на стоянку;
K_{	ext{htp}} - коэффициент, учитывающий снижение выброса при установленном
нейтрализаторе (пробег и холостой ход);
M_{xx} - удельный выброс автомобиля на холостом ходу (г/мин.);
T_{xx}=1 мин. - время работы двигателя на холостом ходу;
{\tt N'} - наибольшее количество автомобилей, выезжающих со стоянки в течение
времени Тср, характеризующегося максимальной интенсивностью выезда;
(*) В соответствии с методическим пособием по расчету, нормированию и контролю
выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.
T_{cp}=1800 сек. - среднее время выезда всей техники со стоянки;
```

Наименован	Mnp	Tnp	Кэ	КнтрП	Ml	Mlmen.	Кнтр	Mxx	Схр	Выброс (г/с)
ue	_	-		p					,	- , ,
Автобетоно насоАБН-47 Камаз65201	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	
(д)										
	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	0.1385619
Автобетоно смеситель АБС-9ДА (д)	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	
	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	0.1385619
Автом. телескоп гидроподъе мник (д)	2.400	30.0	1.0	1.0	2.800	2.300	1.0	0.800	да	
. ,	2.400	30.0	1.0	1.0	2.800	2.300	1.0	0.800	да	0.0405300

Бортовой	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	
автомобиль										
Камаз53215										
(д)										
	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	0.1385039
Седельный	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	
тягач Камаз										
65116 (д)										
	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	0.1385039
Бортовой	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	
полуприцеп										
НЕФАЗ933										
4 (д)										
	8.200	30.0	1.0	1.0	9.300	7.500	1.0	2.900	да	0.1385619
Самосвал	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	
Камаз										
55111 (д)										
	8.200	30.0	1.0	1.0	7.400	6.100	1.0	2.900	да	0.1385039

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000275
	Автобетоносмеситель АБС-9ДА	0.000275
	Автом. телескоп гидроподъемник	0.000133
	Бортовой автомобиль Камаз53215	0.000548
	Седельный тягач Камаз 65116	0.000822
	Бортовой полуприцеп НЕФАЗ9334	0.000826
	Самосвал Камаз 55111	0.000548
	ВСЕГО:	0.003427
Переходный	АвтобетононасоАБН-47Камаз65201	0.000293
•	Автобетоносмеситель АБС-9ДА	0.000293
	Автом. телескоп гидроподъемник	0.000133
	Бортовой автомобиль Камаз53215	0.000584
	Седельный тягач Камаз 65116	0.000876
	Бортовой полуприцеп НЕФАЗ9334	0.000878
	Самосвал Камаз 55111	0.000584
	ВСЕГО:	0.003640
Холодный	АвтобетононасоАБН-47Камаз65201	0.003111
	Автобетоносмеситель АБС-9ДА	0.003111
	Автом. телескоп гидроподъемник	0.001415
	Бортовой автомобиль Камаз53215	0.006220
	Седельный тягач Камаз 65116	0.009331
	Бортовой полуприцеп НЕФАЗ9334	0.009334
	Самосвал Камаз 55111	0.006220
	ВСЕГО:	0.038743
Всего за год		0.045810

Максимальный выброс составляет: 0.1201950 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь

на средних минимальных температурах воздуха.

Наименован	Mnp	Tnp	Кэ	КнтрП	Ml	Mlmen.	Кнтр	Mxx	Схр	Выброс (г/с)
ue		_		p			_		_	
Автобетоно	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	
насоАБН-47										
Камаз65201										
(д)										
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	0.0186231
Автобетоно	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	
смеситель										
АБС-9ДА										
(д)										
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	0.0186231
Автом.	0.500	30.0	1.0	1.0	0.700	0.600	1.0	0.200	да	
телескоп										
гидроподъе										
мник (д)										
	0.500	30.0	1.0	1.0	0.700	0.600	1.0	0.200	да	0.0084658
Бортовой	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	
автомобиль										
Камаз53215										
(д)										
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	0.0186200
Седельный	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	
тягач Камаз										
65116 (д)										
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	0.0186200
Бортовой	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	
полуприцеп										
НЕФАЗ933										
4 (д)										
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	да	0.0186231
Самосвал	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	
Камаз										
55111 (д)										
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	да	0.0186200

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000682
	Автобетоносмеситель АБС-9ДА	0.000682
	Автом. телескоп гидроподъемник	0.000227
	Бортовой автомобиль Камаз53215	0.001352
	Седельный тягач Камаз 65116	0.002029
	Бортовой полуприцеп НЕФАЗ9334	0.002046
	Самосвал Камаз 55111	0.001352
	ВСЕГО:	0.008370
Переходный	АвтобетононасоАБН-47Камаз65201	0.000609
	Автобетоносмеситель АБС-9ДА	0.000609
	Автом. телескоп гидроподъемник	0.000175

	Бортовой автомобиль Камаз 53215	0.001213
	Седельный тягач Камаз 65116	0.001819
	Бортовой полуприцеп НЕФАЗ9334	0.001826
	Самосвал Камаз 55111	0.001213
	ВСЕГО:	0.007464
Холодный	АвтобетононасоАБН-47Камаз65201	0.005722
	Автобетоносмеситель АБС-9ДА	0.005722
	Автом. телескоп гидроподъемник	0.001697
	Бортовой автомобиль Камаз53215	0.011432
	Седельный тягач Камаз 65116	0.017149
	Бортовой полуприцеп НЕФАЗ9334	0.017166
	Самосвал Камаз 55111	0.011432
	ВСЕГО:	0.070320
Всего за год		0.086155

Максимальный выброс составляет: 0.2142686 г/с. Месяц достижения: Январь.

Наименован	Mnp	Tnp	Кэ	КнтрП	Ml	Mlmen.	Кнтр	Mxx	Схр	Выброс (г/с)
ue	•	•		p			•		_	• • •
Автобетоно	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	
насоАБН-47										
Камаз65201										
(д)										
	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	0.0340264
Автобетоно	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	
смеситель										
АБС-9ДА										
(д)										
	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	0.0340264
Автом.	0.600	30.0	1.0	1.0	2.200	2.200	1.0	0.160	да	
телескоп										
гидроподъе										
мник (д)										
	0.600	30.0	1.0	1.0	2.200	2.200	1.0	0.160	да	0.0101561
Бортовой	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	
автомобиль										
Камаз53215										
(д)	2 000	20.0	1.0	1.0	4.000	4.000	1.0	1.000		0.0240111
~ "	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	0.0340111
Седельный	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	
тягач Камаз										
65116 (д)	2 000	20.0	1.0	1.0	4.000	4.000	1.0	1.000		0.0240111
- V	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	0.0340111
Бортовой	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	
полуприцеп										
НЕФАЗ933										
4 (д)	2 000	20.0	1.0	1.0	4.500	4.500	1.0	1 000		0.0240264
C	2.000	30.0	1.0	1.0	4.500	4.500	1.0	1.000	да	0.0340264
Самосвал	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	
Камаз										
55111 (д)	2 000	20.0	1.0	1.0	4.000	4.000	1.0	1 000	_	0.0240111
	2.000	30.0	1.0	1.0	4.000	4.000	1.0	1.000	да	0.0340111

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
	_	(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000030
	Автобетоносмеситель АБС-9ДА	0.000030
	Автом. телескоп гидроподъемник	0.000009
	Бортовой автомобиль Камаз53215	0.000057
	Седельный тягач Камаз 65116	0.000086
	Бортовой полуприцеп НЕФАЗ9334	0.000089
	Самосвал Камаз 55111	0.000057
	ВСЕГО:	0.000359
Переходный	АвтобетононасоАБН-47Камаз65201	0.000042
•	Автобетоносмеситель АБС-9ДА	0.000042
	Автом. телескоп гидроподъемник	0.000011
	Бортовой автомобиль Камаз53215	0.000082
	Седельный тягач Камаз 65116	0.000124
	Бортовой полуприцеп НЕФАЗ9334	0.000125
	Самосвал Камаз 55111	0.000082
	ВСЕГО:	0.000507
Холодный	АвтобетононасоАБН-47Камаз65201	0.000450
	Автобетоносмеситель АБС-9ДА	0.000450
	Автом. телескоп гидроподъемник	0.000114
	Бортовой автомобиль Камаз53215	0.000898
	Седельный тягач Камаз 65116	0.001348
	Бортовой полуприцеп НЕФАЗ9334	0.001351
	Самосвал Камаз 55111	0.000898
	ВСЕГО:	0.005511
Всего за год		0.006377

Максимальный выброс составляет: 0.0168969 г/с. Месяц достижения: Январь.

Наименован	Mnp	Tnp	Кэ	КнтрП	Ml	Mlmen.	Кнтр	Mxx	Схр	Выброс (г/с)
ue				p			_			
Автобетоно	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	
насоАБН-47										
Камаз65201										
(д)										
	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	0.0027042
Автобетоно	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	
смеситель										
АБС-9ДА										
(д)										
	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	0.0027042
Автом.	0.040	30.0	1.0	1.0	0.200	0.150	1.0	0.015	да	
телескоп										
гидроподъе										
мник (д)										

	0.040	20.0	1.0	1.0	0.200	0.150	1.0	0.015		0.000.0011
	0.040	30.0	1.0	1.0	0.200	0.150	1.0	0.015	да	0.0006811
Бортовой	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	
автомобиль										
Камаз53215										
(д)										
	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	0.0027011
Седельный	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	
тягач Камаз										
65116 (д)										
	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	0.0027011
Бортовой	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	
полуприцеп										
НЕФАЗ933										
4 (д)										
	0.160	30.0	1.0	1.0	0.500	0.400	1.0	0.040	да	0.0027042
Самосвал	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	
Камаз										
55111 (д)										
	0.160	30.0	1.0	1.0	0.400	0.300	1.0	0.040	да	0.0027011

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000077
	Автобетоносмеситель АБС-9ДА	0.000077
	Автом. телескоп гидроподъемник	0.000038
	Бортовой автомобиль Камаз53215	0.000149
	Седельный тягач Камаз 65116	0.000224
	Бортовой полуприцеп НЕФАЗ9334	0.000232
	Самосвал Камаз 55111	0.000149
	ВСЕГО:	0.000948
Переходный	АвтобетононасоАБН-47Камаз65201	0.000043
•	Автобетоносмеситель АБС-9ДА	0.000043
	Автом. телескоп гидроподъемник	0.000021
	Бортовой автомобиль Камаз53215	0.000084
	Седельный тягач Камаз 65116	0.000126
	Бортовой полуприцеп НЕФАЗ9334	0.000129
	Самосвал Камаз 55111	0.000084
	ВСЕГО:	0.000529
Холодный	АвтобетононасоАБН-47Камаз65201	0.000402
	Автобетоносмеситель АБС-9ДА	0.000402
	Автом. телескоп гидроподъемник	0.000193
	Бортовой автомобиль Камаз53215	0.000799
	Седельный тягач Камаз 65116	0.001198
	Бортовой полуприцеп НЕФАЗ9334	0.001207
	Самосвал Камаз 55111	0.000799
	ВСЕГО:	0.005000
Всего за год		0.006477

Максимальный выброс составляет: 0.0152095 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета

валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Mnp	Tnp	Кэ	КнтрП	Ml	Mlmen.	Кнтр	Mxx	Схр	Выброс (г/с)
ue	•	•		p			^		•	• • • • • • • • • • • • • • • • • • • •
Автобетоно насоАБН-47 Камаз65201 (д)	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	
(Д)	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	0.0023519
Автобетоно смеситель АБС-9ДА (д)	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	
	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	0.0023519
Автом. телескоп гидроподъе мник (д)	0.065	30.0	1.0	1.0	0.410	0.330	1.0	0.054	да	
	0.065	30.0	1.0	1.0	0.410	0.330	1.0	0.054	да	0.0011259
Бортовой автомобиль Камаз53215 (д)	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	
	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	0.0023427
Седельный тягач Камаз 65116 (д)	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	
	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	0.0023427
Бортовой полуприцеп НЕФАЗ933 4 (д)	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	
	0.136	30.0	1.0	1.0	0.970	0.780	1.0	0.100	да	0.0023519
Самосвал Камаз 55111 (д)	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	
	0.136	30.0	1.0	1.0	0.670	0.540	1.0	0.100	да	0.0023427

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000546
	Автобетоносмеситель АБС-9ДА	0.000546
	Автом. телескоп гидроподъемник	0.000182
	Бортовой автомобиль Камаз53215	0.001082
	Седельный тягач Камаз 65116	0.001623
	Бортовой полуприцеп НЕФАЗ9334	0.001637
	Самосвал Камаз 55111	0.001082
	ВСЕГО:	0.006696

Переходный	АвтобетононасоАБН-47Камаз65201	0.000487
	Автобетоносмеситель АБС-9ДА	0.000487
	Автом. телескоп гидроподъемник	0.000140
	Бортовой автомобиль Камаз53215	0.000970
	Седельный тягач Камаз 65116	0.001456
	Бортовой полуприцеп НЕФАЗ9334	0.001461
	Самосвал Камаз 55111	0.000970
	ВСЕГО:	0.005971
Холодный	АвтобетононасоАБН-47Камаз65201	0.004578
	Автобетоносмеситель АБС-9ДА	0.004578
	Автом. телескоп гидроподъемник	0.001358
	Бортовой автомобиль Камаз53215	0.009146
	Седельный тягач Камаз 65116	0.013719
	Бортовой полуприцеп НЕФАЗ9334	0.013733
	Самосвал Камаз 55111	0.009146
	ВСЕГО:	0.056256
Всего за год		0.068924

Максимальный выброс составляет: 0.1714149 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000089
	Автобетоносмеситель АБС-9ДА	0.000089
	Автом. телескоп гидроподъемник	0.000030
	Бортовой автомобиль Камаз53215	0.000176
	Седельный тягач Камаз 65116	0.000264
	Бортовой полуприцеп НЕФАЗ9334	0.000266
	Самосвал Камаз 55111	0.000176
	ВСЕГО:	0.001088
Переходный	АвтобетононасоАБН-47Камаз65201	0.000079
	Автобетоносмеситель АБС-9ДА	0.000079
	Автом. телескоп гидроподъемник	0.000023
	Бортовой автомобиль Камаз53215	0.000158
	Седельный тягач Камаз 65116	0.000237
	Бортовой полуприцеп НЕФАЗ9334	0.000237
	Самосвал Камаз 55111	0.000158
	ВСЕГО:	0.000970
Холодный	АвтобетононасоАБН-47Камаз65201	0.000744
	Автобетоносмеситель АБС-9ДА	0.000744
	Автом. телескоп гидроподъемник	0.000221
	Бортовой автомобиль Камаз53215	0.001486
	Седельный тягач Камаз 65116	0.002229
	Бортовой полуприцеп НЕФАЗ9334	0.002232
	Самосвал Камаз 55111	0.001486
	ВСЕГО:	0.009142
Всего за год		0.011200

Максимальный выброс составляет: 0.0278549 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000275
	Автобетоносмеситель АБС-9ДА	0.000275
	Автом. телескоп гидроподъемник	0.000133
	Бортовой автомобиль Камаз53215	0.000548
	Седельный тягач Камаз 65116	0.000822
	Бортовой полуприцеп НЕФАЗ9334	0.000826
	Самосвал Камаз 55111	0.000548
	ВСЕГО:	0.003427
Переходный	АвтобетононасоАБН-47Камаз65201	0.000293
	Автобетоносмеситель АБС-9ДА	0.000293
	Автом. телескоп гидроподъемник	0.000133
	Бортовой автомобиль Камаз53215	0.000584
	Седельный тягач Камаз 65116	0.000876
	Бортовой полуприцеп НЕФАЗ9334	0.000878
	Самосвал Камаз 55111	0.000584
	ВСЕГО:	0.003640
Холодный	АвтобетононасоАБН-47Камаз65201	0.003111
	Автобетоносмеситель АБС-9ДА	0.003111
	Автом. телескоп гидроподъемник	0.001415
	Бортовой автомобиль Камаз53215	0.006220
	Седельный тягач Камаз 65116	0.009331
	Бортовой полуприцеп НЕФАЗ9334	0.009334
	Самосвал Камаз 55111	0.006220
	ВСЕГО:	0.038743
Всего за год		0.045810

Максимальный выброс составляет: 0.1201950 г/с. Месяц достижения: Январь.

Для каждого типа техники в первой строке таблицы содержатся коэффициенты для расчета валовых, а во второй - для расчета максимальных выбросов. Последние определены, основываясь на средних минимальных температурах воздуха.

Наименован	Mnp	Tnp	Кэ	Кнтр	Ml	Mlmen	Кнтр	Mxx	%%	Схр	Выброс (г/с)
ue	_			Пр		•					
Автобетоно	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	
насоАБН-47											
Камаз65201											
(д)											
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	0.0186231
Автобетоно	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	
смеситель											
АБС-9ДА											
(д)											
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	0.0186231
Автом.	0.500	30.0	1.0	1.0	0.700	0.600	1.0	0.200	100.0	да	
телескоп											
гидроподъе											
мник (д)											

	0.500	30.0	1.0	1.0	0.700	0.600	1.0	0.200	100.0	ПО	0.0084658
										да	0.0004036
Бортовой	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	
автомобиль											
Камаз53215											
(д)											
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	0.0186200
Седельный	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	
тягач Камаз											
65116 (д)											
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	0.0186200
Бортовой	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	
полуприцеп											
НЕФАЗ933											
4 (д)											
	1.100	30.0	1.0	1.0	1.300	1.100	1.0	0.450	100.0	да	0.0186231
Самосвал	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	
Камаз											
55111 (д)											
	1.100	30.0	1.0	1.0	1.200	1.000	1.0	0.450	100.0	да	0.0186200

ИЗАВ 6503

Участок №3; Мойка колес, тип - 11 - Участок мойки автомобилей, цех №1, площадка №2

Общее описание участка Подтип - с тупиковыми постами

Расстояние от ворот помещения до моечной установки (км): 0.010 Максимальное количество автомобилей, обслуживаемых мойкой в течение часа: 12

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля	Категория	Место пр-ва	0/Г/К	Тип двиг.	Код топл.	Экоконт роль	Нейтрал изатор	Кол-во
Автобетоно насоАБН-47 Камаз65201	Грузовой	СНГ	5	Диз.	3	нет	нет	1
Автобетоно смеситель АБС-9ДА	Грузовой	СНГ	5	Диз.	3	нет	нет	1
Автом. телескоп гидроподъе мник	Грузовой	СНГ	1	Диз.	3	нет	нет	1
Бортовой автомобиль Камаз 5321	Грузовой	СНГ	4	Диз.	3	нет	нет	2
Седельный тягач Камаз 65116	Грузовой	СНГ	4	Диз.	3	нет	нет	3
Бортовой получприце п НЕФАЗ933 4	Грузовой	СНГ	5	Диз.	3	нет	нет	3
Самосвал Камаз 55111	Грузовой	СНГ	4	Диз.	3	нет	нет	2

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс
6-ва	вещества	(z/c)	(т/год)
	Оксиды азота (NOx)*	0.0019667	0.000007
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0015733	0.000006
0304	*Азот (II) оксид (Азота оксид)	0.0002557	9.4E-7
0328	Углерод (Сажа)	0.0000933	3.3E-7
0330	Сера диоксид-Ангидрид сернистый	0.0002403	8.7E-7
0337	Углерод оксид	0.0055000	0.000020
0401	Углеводороды**	0.0007400	0.000003
	В том числе:		
2732	**Керосин	0.0007400	0.000003

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	0.000002
Автобетоносмеситель АБС-9ДА	0.000002
Автом. телескоп гидроподъемник	8.0E-7
Бортовой автомобиль Камаз 5321	0.000003
Седельный тягач Камаз 65116	0.000005
Бортовой получприцеп НЕФАЗ9334	0.000005
Самосвал Камаз 55111	0.000003
ВСЕГО:	0.000020

Максимальный выброс составляет: 0.0055000 г/с.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

Подтип - с тупиковыми постами

 $M_i = \Sigma ((2M_1 \cdot S + M_{\pi p} \cdot T_{\pi p}) \cdot N_{\kappa} \cdot 10^{-6})$, где

 N_{κ} - количество автомобилей данной группы, обслуживаемых мойкой в течение года.

Расчет максимально разовых выбросов производился по формуле:

 $G=(2M_1\cdot S+M_{np}\cdot T_{np})\cdot N'/3600$ г/с, где

 M_1 - пробеговый удельный выброс (г/км);

S - расстояние от ворот помещения до моечной установки (км);

 $M_{\text{пр}}$ - удельный выброс при прогреве двигателя (г/мин.);

 $T_{np} = 0.5$ мин. - время прогрева двигателя;

 ${\tt N'}$ - максимальное количество автомобилей, обслуживаемых мойкой в течение 1 часа.

Наименован	Mnp	Ml	Nκ	Max	Выброс (г/с)
ue					
Автобетоно	3.000	7.500	1	*	0.0055000
насоАБН-47					
Камаз65201					
(д)					
Автобетоно	3.000	7.500	1	*	0.0055000
смеситель					
АБС-9ДА					
(д)					
Автом.	1.500	2.300	1		0.0026533
телескоп					
гидроподъе					
мник (д)					
Бортовой	3.000	6.100	2		0.0054067
автомобиль					

Камаз 5321 (д)					
Седельный тягач Камаз 65116 (д)	3.000	6.100	3		0.0054067
Бортовой получприце п НЕФАЗ933 4 (д)	3.000	7.500	3	*	0.0055000
Самосвал Камаз 55111 (д)	3.000	6.100	2		0.0054067

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	2.2E-7
Автобетоносмеситель АБС-9ДА	2.2E-7
Автом. телескоп гидроподъемник	1.1E-7
Бортовой автомобиль Камаз 5321	4.4E-7
Седельный тягач Камаз 65116	6.6E-7
Бортовой получприцеп НЕФАЗ9334	6.7E-7
Самосвал Камаз 55111	4.4E-7
ВСЕГО:	0.000003

Максимальный выброс составляет: 0.0007400 г/с.

Наименован	Mnp	Ml	Nκ	Max	Выброс (г/с)
ue					
Автобетоно насоАБН-47	0.400	1.100	1	*	0.0007400
Камаз65201					
(д) Автобетоно	0.400	1.100	1	*	0.0007400
смеситель АБС-9ДА	0.400	1.100	1		0.0007400
Автом.	0.200	0.600	1		0.0003733
телескоп гидроподъе мник (д)	0.200	0.000	1		0.0003733
Бортовой автомобиль Камаз 5321 (д)	0.400	1.000	2		0.0007333
Седельный тягач Камаз 65116 (д)	0.400	1.000	3		0.0007333
Бортовой получприце п НЕФАЗ933 4 (д)	0.400	1.100	3	*	0.0007400

Самосвал	0.400	1.000	2	0.0007333
Камаз				
55111 (д)				

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	5.9E-7
Автобетоносмеситель АБС-9ДА	5.9E-7
Автом. телескоп гидроподъемник	2.4E-7
Бортовой автомобиль Камаз 5321	0.000001
Седельный тягач Камаз 65116	0.000002
Бортовой получприцеп НЕФАЗ9334	0.000002
Самосвал Камаз 55111	0.000001
ВСЕГО:	0.000007

Максимальный выброс составляет: 0.0019667 г/с.

Наименован	Mnp	Ml	Nκ	Max	Выброс (г/с)
ue	_				
Автобетоно насоАБН-47 Камаз65201 (д)	1.000	4.500	1	*	0.0019667
Автобетоно смеситель	1.000	4.500	1	*	0.0019667
АБС-9ДА					
(д) Автом. телескоп	0.400	2.200	1		0.0008133
гидроподъе мник (д)					
Бортовой автомобиль Камаз 5321 (д)	1.000	4.000	2		0.0019333
Седельный тягач Камаз 65116 (д)	1.000	4.000	3		0.0019333
Бортовой получприце п НЕФАЗ933 4 (д)	1.000	4.500	3	*	0.0019667
Самосвал Камаз 55111 (д)	1.000	4.000	2		0.0019333

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)

АвтобетононасоАБН-47Камаз65201	2.8E-8
Автобетоносмеситель АБС-9ДА	2.8E-8
Автом. телескоп гидроподъемник	8.0E-9
Бортовой автомобиль Камаз 5321	5.2E-8
Седельный тягач Камаз 65116	7.8E-8
Бортовой получприцеп НЕФАЗ9334	8.4E-8
Самосвал Камаз 55111	5.2E-8
ВСЕГО:	3.3E-7

Максимальный выброс составляет: 0.0000933 г/с.

Наименован	Mnp	Ml	Nκ	Max	Выброс (г/с)
ue	•				• • • • • • • • • • • • • • • • • • • •
Автобетоно насоАБН-47 Камаз65201 (д)	0.040	0.400	1	*	0.0000933
Автобетоно смеситель АБС-9ДА (д)	0.040	0.400	1	*	0.0000933
Автом. телескоп гидроподъе мник (д)	0.010	0.150	1		0.0000267
Бортовой автомобиль Камаз 5321 (д)	0.040	0.300	2		0.0000867
Седельный тягач Камаз 65116 (д)	0.040	0.300	3		0.0000867
Бортовой получприце п НЕФАЗ933 4 (д)	0.040	0.400	3	*	0.0000933
Самосвал Камаз 55111 (д)	0.040	0.300	2		0.0000867

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	7.2E-8
Автобетоносмеситель АБС-9ДА	7.2E-8
Автом. телескоп гидроподъемник	3.4E-8
Бортовой автомобиль Камаз 5321	1.3E-7
Седельный тягач Камаз 65116	2.0E-7
Бортовой получприцеп НЕФАЗ9334	2.2E-7
Самосвал Камаз 55111	1.3E-7
ВСЕГО:	8.7E-7

Максимальный выброс составляет: 0.0002403 г/с.

Наименован	Mnp	Ml	Nκ	Max	Выброс (г/с)
ue	•				•
Автобетоно насоАБН-47 Камаз65201 (д)	0.113	0.780	1	*	0.0002403
Автобетоно смеситель АБС-9ДА (д)	0.113	0.780	1	*	0.0002403
Автом. телескоп гидроподъе мник (д)	0.054	0.330	1		0.0001120
Бортовой автомобиль Камаз 5321 (д)	0.113	0.540	2		0.0002243
Седельный тягач Камаз 65116 (д)	0.113	0.540	3		0.0002243
Бортовой получприце п НЕФАЗ933 4 (д)	0.113	0.780	3	*	0.0002403
Самосвал Камаз 55111 (д)	0.113	0.540	2		0.0002243

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	4.7E-7
Автобетоносмеситель АБС-9ДА	4.7E-7
Автом. телескоп гидроподъемник	2.0E-7
Бортовой автомобиль Камаз 5321	9.3E-7
Седельный тягач Камаз 65116	0.000001
Бортовой получприцеп НЕФАЗ9334	0.000001
Самосвал Камаз 55111	9.3E-7
ВСЕГО:	0.000006

Максимальный выброс составляет: 0.0015733 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)

АвтобетононасоАБН-47Камаз65201	7.7E-8
Автобетоносмеситель АБС-9ДА	7.7E-8
Автом. телескоп гидроподъемник	3.2E-8
Бортовой автомобиль Камаз 5321	1.5E-7
Седельный тягач Камаз 65116	2.3E-7
Бортовой получприцеп НЕФАЗ9334	2.3E-7
Самосвал Камаз 55111	1.5E-7
ВСЕГО:	9.4E-7

Максимальный выброс составляет: 0.0002557 г/с.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
АвтобетононасоАБН-47Камаз65201	2.2E-7
Автобетоносмеситель АБС-9ДА	2.2E-7
Автом. телескоп гидроподъемник	1.1E-7
Бортовой автомобиль Камаз 5321	4.4E-7
Седельный тягач Камаз 65116	6.6E-7
Бортовой получприцеп НЕФАЗ9334	6.7E-7
Самосвал Камаз 55111	4.4E-7
ВСЕГО:	0.000003

Максимальный выброс составляет: 0.0007400 г/с.

Наименован	Mnp	Ml	$N\kappa$	%%	Max	Выброс (г/с)
ue						
Автобетоно	0.400	1.100	1	100.0	*	0.0007400
насоАБН-47						
Камаз65201						
(д)						
Автобетоно	0.400	1.100	1	100.0	*	0.0007400
смеситель						
АБС-9ДА						
(д)						
Автом.	0.200	0.600	1	100.0		0.0003733
телескоп						
гидроподъе						
мник (д)						
Бортовой	0.400	1.000	2	100.0		0.0007333
автомобиль						
Камаз 5321						
(д)						
Седельный	0.400	1.000	3	100.0		0.0007333
тягач Камаз						
65116 (д)						
Бортовой	0.400	1.100	3	100.0	*	0.0007400
получприце						
П						
НЕФАЗ933						
4 (д)						
Самосвал	0.400	1.000	2	100.0		0.0007333
Камаз						

55111 (д)			

ИЗАВ 6504

Участок №4; Внутренний проезд, тип - 7 - Внутренний проезд, цех №1, площадка №2

Общее описание участка

Протяженность внутреннего проезда (км): 0.500 - среднее время выезда (мин.): 30.0

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля		Место пр-ва	Ο/Γ/Κ	Тип двиг.	Код топл.	Нейтрализат on
Автобетоно насоАБН-47 Камаз65201	Грузовой	СНГ	5	Диз.	3	<i>ор</i> нет
Автобетоно смеситель АБС-9ДА	Грузовой	СНГ	5	Диз.	3	нет
Автом. телескоп гидроподъе мник	Грузовой	СНГ	1	Диз.	3	нет
Бортовой автомобиль Камаз 5321	Грузовой	СНГ	4	Диз.	3	нет
Седельный тягач Камаз 65116	Грузовой	СНГ	4	Диз.	3	нет
Бортовой полуприцеп НЕФАЗ933 4	Грузовой	СНГ	5	Диз.	3	нет
Самосвал Камаз 55111	Грузовой	СНГ	4	Диз.	3	нет

АвтобетононасоАБН-47Камаз65201: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Автобетоносмеситель АБС-9ДА: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Автом. телескоп гидроподъемник : количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Бортовой автомобиль Камаз 5321: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	2.00	1
Февраль	2.00	1
Март	2.00	1
Апрель	2.00	1
Май	2.00	1
Июнь	2.00	1
Июль	2.00	1
Август	2.00	1
Сентябрь	2.00	1
Октябрь	2.00	1
Ноябрь	2.00	1
Декабрь	2.00	1

Седельный тягач Камаз 65116: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	1

Февраль	3.00	1
Март	3.00	1
Апрель	3.00	1
Май	3.00	1
Июнь	3.00	1
Июль	3.00	1
Август	3.00	1
Сентябрь	3.00	1
Октябрь	3.00	1
Ноябрь	3.00	1
Декабрь	3.00	1

Бортовой полуприцеп НЕФАЗ9334: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	3.00	1
Февраль	3.00	1
Март	3.00	1
Апрель	3.00	1
Май	3.00	1
Июнь	3.00	1
Июль	3.00	1
Август	3.00	1
Сентябрь	3.00	1
Октябрь	3.00	1
Ноябрь	3.00	1
Декабрь	3.00	1

Самосвал Камаз 55111: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	2.00	1
Февраль	2.00	1
Март	2.00	1
Апрель	2.00	1
Май	2.00	1
Июнь	2.00	1
Июль	2.00	1
Август	2.00	1
Сентябрь	2.00	1
Октябрь	2.00	1
Ноябрь	2.00	1
Декабрь	2.00	1

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс
в-ва	вещества	(z/c)	(т/год)
	Оксиды азота (NOx)*	0.0076944	0.006640
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0061556	0.005312
0304	*Азот (II) оксид (Азота оксид)	0.0010003	0.000863

0328	Углерод (Сажа)	0.0008056	0.000616
0330	Сера диоксид-Ангидрид сернистый	0.0014806	0.001131
0337	Углерод оксид	0.0146944	0.011550
0401	Углеводороды**	0.0022778	0.001802
	В том числе:		
2732	**Керосин	0.0022778	0.001802

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
	-	(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000394
	Автобетоносмеситель АБС-9ДА	0.000394
	Автом. телескоп гидроподъемник	0.000121
	Бортовой автомобиль Камаз 5321	0.000641
	Седельный тягач Камаз 65116	0.000961
	Бортовой полуприцеп НЕФАЗ9334	0.001181
	Самосвал Камаз 55111	0.000641
	ВСЕГО:	0.004331
Переходный	АвтобетононасоАБН-47Камаз65201	0.000176
	Автобетоносмеситель АБС-9ДА	0.000176
	Автом. телескоп гидроподъемник	0.000053
	Бортовой автомобиль Камаз 5321	0.000280
	Седельный тягач Камаз 65116	0.000420
	Бортовой полуприцеп НЕФАЗ9334	0.000527
	Самосвал Камаз 55111	0.000280
	ВСЕГО:	0.001911
Холодный	АвтобетононасоАБН-47Камаз65201	0.000488
	Автобетоносмеситель АБС-9ДА	0.000488
	Автом. телескоп гидроподъемник	0.000147
	Бортовой автомобиль Камаз 5321	0.000777
	Седельный тягач Камаз 65116	0.001166
	Бортовой полуприцеп НЕФАЗ9334	0.001465
	Самосвал Камаз 55111	0.000777
	ВСЕГО:	0.005308
Всего за год		0.011550

Максимальный выброс составляет: 0.0146944 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \Sigma (M_l \cdot L_p \cdot K_{\text{HTP}} \cdot N_{\text{KP}} \cdot D_p \cdot 10^{-6})$, где

 N_{kp} - количество автомобилей данной группы, проезжающих по проезду в сутки; D_{p} - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i=M_l \cdot L_p \cdot K_{HTP} \cdot N' / T_{CP} \Gamma/C$ (*),

С учетом синхронности работы: $G_{\text{max}} = \Sigma (G_{\text{i}})$, где

 M_1 - пробеговый удельный выброс (г/км);

 $L_p = 0.500$ км - протяженность внутреннего проезда;

 $K_{\text{нтр}}$ - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

N' - наибольшее количество автомобилей, проезжающих по проезду в течение времени Тср, характеризующегося максимальной интенсивностью движения; (*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 $T_{\rm cp} = 1800$ сек. - среднее время наиболее интенсивного движения по проезду;

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue		-		_ , ,
Автобетоно	9.300	1.0	да	0.0025833
насоАБН-47				
Камаз65201				
(д)				
Автобетоно	9.300	1.0	да	0.0025833
смеситель				
АБС-9ДА				
(д)				
Автом.	2.800	1.0	да	0.0007778
телескоп				
гидроподъе				
мник (д)				
Бортовой	7.400	1.0	да	0.0020556
автомобиль				
Камаз 5321				
(д)				
Седельный	7.400	1.0	да	0.0020556
тягач Камаз				
65116 (д)				
Бортовой	9.300	1.0	да	0.0025833
полуприцеп				
НЕФАЗ933				
4 (д)				
Самосвал	7.400	1.0	да	0.0020556
Камаз				
55111 (д)				

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000058
	Автобетоносмеситель АБС-9ДА	0.000058
	Автом. телескоп гидроподъемник	0.000032
	Бортовой автомобиль Камаз 5321	0.000105
	Седельный тягач Камаз 65116	0.000158
	Бортовой полуприцеп НЕФАЗ9334	0.000173
	Самосвал Камаз 55111	0.000105
	ВСЕГО:	0.000688

Переходный	АвтобетононасоАБН-47Камаз65201	0.000025
	Автобетоносмеситель АБС-9ДА	0.000025
	Автом. телескоп гидроподъемник	0.000013
	Бортовой автомобиль Камаз 5321	0.000045
	Седельный тягач Камаз 65116	0.000068
	Бортовой полуприцеп НЕФАЗ9334	0.000074
	Самосвал Камаз 55111	0.000045
	ВСЕГО:	0.000295
Холодный	АвтобетононасоАБН-47Камаз65201	0.000068
	Автобетоносмеситель АБС-9ДА	0.000068
	Автом. телескоп гидроподъемник	0.000037
	Бортовой автомобиль Камаз 5321	0.000126
	Седельный тягач Камаз 65116	0.000189
	Бортовой полуприцеп НЕФАЗ9334	0.000205
	Самосвал Камаз 55111	0.000126
	ВСЕГО:	0.000819
Всего за год		0.001802

Максимальный выброс составляет: 0.0022778 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue		•	•	• , ,
Автобетоно	1.300	1.0	да	0.0003611
насоАБН-47				
Камаз65201				
(д)				
Автобетоно	1.300	1.0	да	0.0003611
смеситель				
АБС-9ДА				
(д)				
Автом.	0.700	1.0	да	0.0001944
телескоп				
гидроподъе				
мник (д)				
Бортовой	1.200	1.0	да	0.0003333
автомобиль				
Камаз 5321				
(д)				
Седельный	1.200	1.0	да	0.0003333
тягач Камаз				
65116 (д)				
Бортовой	1.300	1.0	да	0.0003611
полуприцеп				
НЕФАЗ933				
4 (д)				
Самосвал	1.200	1.0	да	0.0003333
Камаз				
55111 (д)				

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000236

Автобетоносмеситель АБС-9ДА	0.000236
Автом. телескоп гидроподъемник	0.000116
Бортовой автомобиль Камаз 5321	0.000420
Седельный тягач Камаз 65116	0.000630
Бортовой полуприцеп НЕФАЗ9334	0.000709
Самосвал Камаз 55111	0.000420
ВСЕГО:	0.002767
Автобетононасо АБН-47Камаз 65201	0.000095
Автобетоносмеситель АБС-9ДА	0.000095
	0.000046
Бортовой автомобиль Камаз 5321	0.000168
Седельный тягач Камаз 65116	0.000252
Бортовой полуприцеп НЕФАЗ9334	0.000284
Самосвал Камаз 55111	0.000168
ВСЕГО:	0.001107
АвтобетононасоАБН-47Камаз65201	0.000236
Автобетоносмеситель АБС-9ДА	0.000236
Автом. телескоп гидроподъемник	0.000116
Бортовой автомобиль Камаз 5321	0.000420
Седельный тягач Камаз 65116	0.000630
Бортовой полуприцеп НЕФАЗ9334	0.000709
Самосвал Камаз 55111	0.000420
ВСЕГО:	0.002767
	0.006640
	Автом. телескоп гидроподъемник Бортовой автомобиль Камаз 5321 Седельный тягач Камаз 65116 Бортовой полуприцеп НЕФАЗ9334 Самосвал Камаз 55111 ВСЕГО: АвтобетононасоАБН-47Камаз65201 Автобетоносмеситель АБС-9ДА Автом. телескоп гидроподъемник Бортовой автомобиль Камаз 5321 Седельный тягач Камаз 65116 Бортовой полуприцеп НЕФАЗ9334 Самосвал Камаз 55111 ВСЕГО: АвтобетононасоАБН-47Камаз65201 АвтобетононасоАБН-47Камаз65201 Автобетоносмеситель АБС-9ДА Автом. телескоп гидроподъемник Бортовой автомобиль Камаз 5321 Седельный тягач Камаз 65116 Бортовой полуприцеп НЕФАЗ9334 Самосвал Камаз 55111

Максимальный выброс составляет: 0.0076944 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue				
Автобетоно	4.500	1.0	да	0.0012500
насоАБН-47				
Камаз65201				
(д)				
Автобетоно	4.500	1.0	да	0.0012500
смеситель				
АБС-9ДА				
(д)				
Автом.	2.200	1.0	да	0.0006111
телескоп				
гидроподъе				
мник (д)				
Бортовой	4.000	1.0	да	0.0011111
автомобиль				
Камаз 5321				
(д)				
Седельный	4.000	1.0	да	0.0011111
тягач Камаз				
65116 (д)				
Бортовой	4.500	1.0	да	0.0012500
полуприцеп				
НЕФАЗ933				
4 (д)				
Самосвал	4.000	1.0	да	0.0011111
Камаз				
55111 (д)				

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000021
	Автобетоносмеситель АБС-9ДА	0.000021
	Автом. телескоп гидроподъемник	0.000008
	Бортовой автомобиль Камаз 5321	0.000032
	Седельный тягач Камаз 65116	0.000047
	Бортовой полуприцеп НЕФАЗ9334	0.000063
	Самосвал Камаз 55111	0.000032
	ВСЕГО:	0.000223
Переходный	АвтобетононасоАБН-47Камаз65201	0.000009
	Автобетоносмеситель АБС-9ДА	0.000009
	Автом. телескоп гидроподъемник	0.000004
	Бортовой автомобиль Камаз 5321	0.000015
	Седельный тягач Камаз 65116	0.000023
	Бортовой полуприцеп НЕФАЗ9334	0.000028
	Самосвал Камаз 55111	0.000015
	ВСЕГО:	0.000104
Холодный	Автобетононасо АБН-47Камаз 65201	0.000026
	Автобетоносмеситель АБС-9ДА	0.000026
	Автом. телескоп гидроподъемник	0.000011
	Бортовой автомобиль Камаз 5321	0.000042
	Седельный тягач Камаз 65116	0.000063
	Бортовой полуприцеп НЕФАЗ9334	0.000079
	Самосвал Камаз 55111	0.000042
	ВСЕГО:	0.000289
Всего за год		0.000616

Максимальный выброс составляет: 0.0008056 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue				
Автобетоно	0.500	1.0	да	0.0001389
насоАБН-47				
Камаз65201				
(д)				
Автобетоно	0.500	1.0	да	0.0001389
смеситель				
АБС-9ДА				
(д)				
Автом.	0.200	1.0	да	0.0000556
телескоп				
гидроподъе				
мник (д)				
Бортовой	0.400	1.0	да	0.0001111
автомобиль				
Камаз 5321				
(д)				
Седельный	0.400	1.0	да	0.0001111
тягач Камаз				
65116 (д)				

Бортовой	0.500	1.0	да	0.0001389
полуприцеп НЕФАЗ933				
4 (д)				
Самосвал	0.400	1.0	да	0.0001111
Камаз				
55111 (д)				

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000041
	Автобетоносмеситель АБС-9ДА	0.000041
	Автом. телескоп гидроподъемник	0.000017
	Бортовой автомобиль Камаз 5321	0.000057
	Седельный тягач Камаз 65116	0.000085
	Бортовой полуприцеп НЕФАЗ9334	0.000123
	Самосвал Камаз 55111	0.000057
	ВСЕГО:	0.000421
Переходный	АвтобетононасоАБН-47Камаз65201	0.000018
•	Автобетоносмеситель АБС-9ДА	0.000018
	Автом. телескоп гидроподъемник	0.000008
	Бортовой автомобиль Камаз 5321	0.000025
	Седельный тягач Камаз 65116	0.000038
	Бортовой полуприцеп НЕФАЗ9334	0.000055
	Самосвал Камаз 55111	0.000025
	ВСЕГО:	0.000188
Холодный	АвтобетононасоАБН-47Камаз65201	0.000051
	Автобетоносмеситель АБС-9ДА	0.000051
	Автом. телескоп гидроподъемник	0.000022
	Бортовой автомобиль Камаз 5321	0.000070
	Седельный тягач Камаз 65116	0.000106
	Бортовой полуприцеп НЕФАЗ9334	0.000153
	Самосвал Камаз 55111	0.000070
	ВСЕГО:	0.000522
Всего за год		0.001131

Максимальный выброс составляет: 0.0014806 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue		_		
Автобетоно	0.970	1.0	да	0.0002694
насоАБН-47				
Камаз65201				
(д)				
Автобетоно	0.970	1.0	да	0.0002694
смеситель				
АБС-9ДА				
(д)				
Автом.	0.410	1.0	да	0.0001139
телескоп				
гидроподъе				

мник (д)				
Бортовой	0.670	1.0	да	0.0001861
автомобиль				
Камаз 5321				
(д)				
Седельный	0.670	1.0	да	0.0001861
тягач Камаз				
65116 (д)				
Бортовой	0.970	1.0	да	0.0002694
полуприцеп				
НЕФАЗ933				
4 (д)				
Самосвал	0.670	1.0	да	0.0001861
Камаз				
55111 (д)				

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
		(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000189
	Автобетоносмеситель АБС-9ДА	0.000189
	Автом. телескоп гидроподъемник	0.000092
	Бортовой автомобиль Камаз 5321	0.000336
	Седельный тягач Камаз 65116	0.000504
	Бортовой полуприцеп НЕФАЗ9334	0.000567
	Самосвал Камаз 55111	0.000336
	ВСЕГО:	0.002213
Переходный	АвтобетононасоАБН-47Камаз65201	0.000076
	Автобетоносмеситель АБС-9ДА	0.000076
	Автом. телескоп гидроподъемник	0.000037
	Бортовой автомобиль Камаз 5321	0.000134
	Седельный тягач Камаз 65116	0.000202
	Бортовой полуприцеп НЕФАЗ9334	0.000227
	Самосвал Камаз 55111	0.000134
	ВСЕГО:	0.000885
Холодный	АвтобетононасоАБН-47Камаз65201	0.000189
	Автобетоносмеситель АБС-9ДА	0.000189
	Автом. телескоп гидроподъемник	0.000092
	Бортовой автомобиль Камаз 5321	0.000336
	Седельный тягач Камаз 65116	0.000504
	Бортовой полуприцеп НЕФАЗ9334	0.000567
	Самосвал Камаз 55111	0.000336
	ВСЕГО:	0.002213
Всего за год		0.005312

Максимальный выброс составляет: 0.0061556 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)
	-	(тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000031
	Автобетоносмеситель АБС-9ДА	0.000031
	Автом. телескоп гидроподъемник	0.000015
	Бортовой автомобиль Камаз 5321	0.000055
	Седельный тягач Камаз 65116	0.000082
	Бортовой полуприцеп НЕФАЗ9334	0.000092
	Самосвал Камаз 55111	0.000055
	ВСЕГО:	0.000360
Переходный	АвтобетононасоАБН-47Камаз65201	0.000012
	Автобетоносмеситель АБС-9ДА	0.000012
	Автом. телескоп гидроподъемник	0.000006
	Бортовой автомобиль Камаз 5321	0.000022
	Седельный тягач Камаз 65116	0.000033
	Бортовой полуприцеп НЕФАЗ9334	0.000037
	Самосвал Камаз 55111	0.000022
	ВСЕГО:	0.000144
Холодный	АвтобетононасоАБН-47Камаз65201	0.000031
	Автобетоносмеситель АБС-9ДА	0.000031
	Автом. телескоп гидроподъемник	0.000015
	Бортовой автомобиль Камаз 5321	0.000055
	Седельный тягач Камаз 65116	0.000082
	Бортовой полуприцеп НЕФАЗ9334	0.000092
	Самосвал Камаз 55111	0.000055
	ВСЕГО:	0.000360
Всего за год		0.000863

Максимальный выброс составляет: 0.0010003 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	АвтобетононасоАБН-47Камаз65201	0.000058
	Автобетоносмеситель АБС-9ДА	0.000058
	Автом. телескоп гидроподъемник	0.000032
	Бортовой автомобиль Камаз 5321	0.000105
	Седельный тягач Камаз 65116	0.000158
	Бортовой полуприцеп НЕФАЗ9334	0.000173
	Самосвал Камаз 55111	0.000105
	ВСЕГО:	0.000688
Переходный	АвтобетононасоАБН-47Камаз65201	0.000025
_	Автобетоносмеситель АБС-9ДА	0.000025
	Автом. телескоп гидроподъемник	0.000013
	Бортовой автомобиль Камаз 5321	0.000045
	Седельный тягач Камаз 65116	0.000068
	Бортовой полуприцеп НЕФАЗ9334	0.000074
	Самосвал Камаз 55111	0.000045
	ВСЕГО:	0.000295

Холодный	АвтобетононасоАБН-47Камаз65201	0.000068
	Автобетоносмеситель АБС-9ДА	0.000068
	Автом. телескоп гидроподъемник	0.000037
	Бортовой автомобиль Камаз 5321	0.000126
	Седельный тягач Камаз 65116	0.000189
	Бортовой полуприцеп НЕФАЗ9334	0.000205
	Самосвал Камаз 55111	0.000126
	ВСЕГО:	0.000819
Всего за год		0.001802

Максимальный выброс составляет: 0.0022778 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	%%	Схр	Выброс (г/с)
ue		•		•	• • •
Автобетоно	1.300	1.0	100.0	да	0.0003611
насоАБН-47					
Камаз65201					
(д)					
Автобетоно	1.300	1.0	100.0	да	0.0003611
смеситель					
АБС-9ДА					
(д)					
Автом.	0.700	1.0	100.0	да	0.0001944
телескоп					
гидроподъе					
мник (д)					
Бортовой	1.200	1.0	100.0	да	0.0003333
автомобиль					
Камаз 5321					
(д)	1.200	1.0	100.0		0.0002222
Седельный	1.200	1.0	100.0	да	0.0003333
тягач Камаз					
65116 (д)	1 200	1.0	100.0		0.0002611
Бортовой	1.300	1.0	100.0	да	0.0003611
полуприцеп НЕФАЗ933					
4 (д)	1.200	1.0	100.0	по	0.0003333
Самосвал Камаз	1.200	1.0	100.0	да	0.0003333
55111 (д)					
ээтт (д)					

Суммарные выбросы по предприятию

Код в-ва	Название вещества	Валовый выброс (m/год)
0301	Азота диоксид (Азот (IV) оксид)	7.496718
0304	Азот (II) оксид (Азота оксид)	1.218217
0328	Углерод (Сажа)	1.328695
0330	Сера диоксид-Ангидрид сернистый	0.854158
0337	Углерод оксид	7.639627
0401	Углеводороды	2.038460

Расшифровка суммарного выброса углеводородов (код 0401)

Код в-ва	Название вещества	Валовый выброс (m/год)	
2704	Бензин (нефтяной, малосернистый)	0.025700	
2732	Керосин	2.012760	

Расчет произведен программой «Дизель» версия 2.2.13 от 05.04.2024

Copyright© 2001-2021 Фирма «Интеграл» Программа зарегистрирована на: ФГБОУ ВО "УГЛТУ" Регистрационный номер: 03-11-0036

Объект: №604 Дальагротерминал Котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №6505 Самоходный дизельный коленчатый подъемник

Расчет произведен в соответствии с документом: «Методика расчёта выделений загрязняющих веществ в атмосферу от стационарных дизельных установок». НИИ АТМОСФЕРА, Санкт-Петербург, 2001 год.

Результаты расчетов

I COJUIDIUIDI	- pae 10102					
Код	Название вещества	Без учёта газоочистки.		Газооч.	С учётом газоо	чистки
		г/с	т/год	%	г/с	т/год
0301	Азота диоксид	0.0835445	0.008841	0.0	0.0835445	0.008841
0304	Азот (II) оксид	0.0135760	0.001437	0.0	0.0135760	0.001437
0328	Углерод (Сажа)	0.0070972	0.000771	0.0	0.0070972	0.000771
0330	Сера диоксид	0.0111528	0.001157	0.0	0.0111528	0.001157
0337	Углерод оксид	0.0730000	0.007710	0.0	0.0730000	0.007710
0703	Бенз/а/пирен	0.00000013181	0.00000001414	0.0	0.00000013181	0.00000001414
1325	Формальдегид	0.0015208	0.000154	0.0	0.0015208	0.000154
2732	Керосин	0.0365000	0.003855	0.0	0.0365000	0.003855

Нормирование выбросов оксидов азота производится в соотношении $M_{NO2} = 0.8 \cdot M_{NOx}$ и $M_{NO} = 0.13 \cdot M_{NOx}$.

Расчётные формулы

До газоочистки:

Максимальный выброс (M_i)

 $M_i=(1/3600)\cdot e_i\cdot P_3/X_i, \Gamma/c$ (1)

Валовый выброс (W_i)

 $W_i = (1/1000) \cdot q_i \cdot G_T / X_i, T / \Gamma O J (2)$

После газоочистки:

Максимальный выброс (M_i)

 $M_i=M_i\cdot(1-f/100), \Gamma/c$

Валовый выброс (W_i)

 $W_i=W_i\cdot(1-f/100)$, т/год

Исходные данные:

Эксплуатационная мощность стационарной дизельной установки Р_э=36.5 [кВт]

Расход топлива стационарной дизельной установкой за год G_т=0.257 [т]

Коэффициент, зависящий от страны-производителя дизельной установки (X_i):

 $X_{CO}=1$; $X_{NOx}=1$; $X_{SO2}=1$; $X_{octanibility}=1$.

Удельные выбросы на единицу полезной работы стационарной дизельной установки на режиме

эксплуатационной мощности (е;) [г/(кВт·ч)]:

	'	_ \ -/ \					
Углерод оксид	Оксиды	азота	Керосин	Углерод	Сера диоксид	Формальдегид	Бенз/а/пирен
	NOx			(Сажа)			
7.2		10.3	3.6	0.7	1.1	0.15	0.000013

Удельные выбросы на один килограмм дизельного топлива при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл (qi) [г/кг топлива]:

Углерод оксид	,	Оксиды NOx	азота	Керосин	Углерод (Сажа)	Сера диоксид	Формальдегид	Бенз/а/пирен
	30		43	15	3	4.5	0.6	0.000055

Объёмный расход отработавших газов (Qог):

Удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя b_3 =208.5 г/(кВт·ч)

Температура отработавших газов T_{ог}=723 К

 $Q_{or} = 8.72 \cdot 0.000001 \cdot b_3 \cdot P_3 / (1.31 / (1 + T_{or} / 273)) = 0.184817 \text{ м}^3 / \text{с}$ (Приложение)

Программа основана на методических документах:

«Методика расчёта выделений загрязняющих веществ в атмосферу от стационарных дизельных установок». НИИ АТМОСФЕРА, Санкт-Петербург, 2001 год.

ГОСТ Р 56163-2019 «ВЫБРОСЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ. Метод расчета выбросов загрязняющих веществ в атмосферу стационарными дизельными установками (новыми и после капитального ремонта) различной мощности и назначения при их эксплуатации»

Расчет произведен программой «Сварка» версия 3.1.24 от 24.09.2021

Соругіght© 1997-2021 Фирма «Интеграл» Программа зарегистрирована на: ФГБОУ ВО "УГЛТУ" Регистрационный номер: 03-11-0036

Объект: №604 Дальагротерминал Котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №6506 Сварка

Результаты расчетов

Код	Название вещества	Без учета о	чистки	Очистка (η1)	С учетом очистки	
		г/с	т/год	%	г/с	т/год
0123	диЖелезо триоксид, (железа оксид) (в пересчете на железо) (Железо сесквиоксид)	0.0003155	0.0000363	0.00	0.0003155	0.0000363
0143	Марганец и его соединения (в пересчете на марганец (IV) оксид)	0.0000272	0.0000031	0.00	0.0000272	0.0000031
0301	Азота диоксид (Двуокись азота; пероксид азота)	0.0001107	0.0000128	0.00	0.0001107	0.0000128
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0.0009813	0.0001131	0.00	0.0009813	0.0001131
0342	Фтористые газообразные соединения (в пересчете на фтор): - Гидрофторид (Водород фторид; фтороводород)	0.0000553	0.0000064	0.00	0.0000553	0.0000064
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)	0.0000974	0.0000112	0.00	0.0000974	0.0000112
2908	Пыль неорганическая, содержащая двуокись кремния, в %: - 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем и другие)	0.0000413	0.0000048	0.00	0.0000413	0.0000048

Расчетные формулы

Расчет производился с учетом двадцатиминутного осреднения.

$$M_M = B_3 \cdot K \cdot K_{rp} \cdot (1 - \eta_1) \cdot t_i / 1200 / 3600, \Gamma/c (2.1, 2.1a [1])$$

$$M^{r}_{M}$$
=3.6· M_{M} · T ·10⁻³, т/год (2.8, 2.15 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Исходные данные

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка

материала: УОНИ-13/45

Продолжительность производственного цикла (t_i): 5 мин. (300 с)

Удельные выделения загрязняющих веществ

Кол	Название вешества	К. г/кг

0122	NC /	10.000000
0123	диЖелезо триоксид, (железа оксид) (в	10.6900000
	пересчете на железо) (Железо сесквиоксид)	
0143	Марганец и его соединения (в пересчете на	0.9200000
	марганец (IV) оксид)	
0301	Азота диоксид (Двуокись азота; пероксид	1.5000000
	азота)	
0337	Углерода оксид (Углерод окись; углерод	13.3000000
	моноокись; угарный газ)	
0342	Фтористые газообразные соединения (в	0.7500000
	пересчете на фтор): - Гидрофторид (Водород	
	фторид; фтороводород)	
0344	Фториды неорганические плохо	3.3000000
	растворимые - (алюминия фторид, кальция	
	фторид, натрия гексафторалюминат)	
2908	Пыль неорганическая, содержащая двуокись	1.4000000
	кремния, в %: - 70-20 (шамот, цемент, пыль	
	цементного производства - глина, глинистый	
	сланец, доменный шлак, песок, клинкер,	
	зола, кремнезем и другие)	

Фактическая продолжительность технологической операции сварочных работ в течение года (T): 8 час 0 мин

Расчётное значение количества электродов (Вэ)

$$B_9 = G \cdot (100-H) \cdot 10^{-2} = 1.0625 \text{ кг}$$

Масса расходуемых электродов за час (G), кг: 1.25

Норматив образования огарков от расхода электродов (н), %: 15

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{rp.})$: 0.4

Программа основана на документе:

«Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей)», НИИ Атмосфера, Санкт-Петербург, 1997

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №501 Труба Источник выделения: №1 Котел Е-40-1,6 Р №1

Результаты расчетов

Код	Наименование выброса	Без учета	очистки	Очистка	С учетом очистки		
		Максимально-ра	Валовый	%	Максимально-разо	Валовый выброс,	
		зовый выброс,	выброс, т/год		вый выброс, г/с	т/год	
		г/с					
0301	Азот (IV) оксид	5.7041630	194.780684	0,00	5.7041630	194.780684	
0304	Азот (II) оксид	0.9269265	31.651861	0,00	0.9269265	31.651861	
0328	Углерод (Сажа)	1.1815585	37.261630	99,86	0.0016542	0.052166	
0330	Сера диоксид	0.8044444	25.368960	0,00	0.8044444	25.368960	
0337	Углерод оксид	134.0654933	1272.912937	0,00	134.0654933	1272.912937	
0703	Бенз/а/пирен	0.00223310084	0.07414993458	0,00	0.00223310084	0.07414993458	
2902	Взвешенные вещества	48.8322916	1539.975150	99,86	0.0683652	2.155965	

Исходные данные

Наименование топлива: Дрова

Тип топлива: Дрова, опилки, щепа, дробные отходы

Характер топлива: Торф, дрова

Фактический расход топлива (В, В')

B = 63422.4 т/годB' = 2011.11111 г/c

1. Расчет выбросов оксидов азота при слоевом сжигании твердого топлива

Расчетный расход топлива (B_p, B_p')

Потери тепла от механической неполноты сгорания (q₄)

Среднее: 2 % Максимальное: 7 %

$$B_p = B \cdot (1-q_4/100) = 62153.952 \text{ т/год}$$

$$B_p' = B' \cdot (1-q_4/100) = 1.87033 \text{ kg/c}$$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 15.44 \text{ МДж/кг}$

Коэффициент избытка воздуха в топке $\alpha_{\rm T}$ =1.4

Тепловое напряжение зеркала горения (qr, qr')

Время работы котла за год Time = 8280 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{r}, Q_{r})

$$Q_{\rm T} = B_{\rm p}/{Time/3.6 \cdot Q_{\rm r}} = 21.35187~{MB_{\rm T}}$$

$$Q_{\rm T}' = B_{\rm p}' \cdot Q_{\rm r} = 19.15221 \; MB_{\rm T}$$

Площадь горения $F = 1 \text{ м}^2$

$$q_r = Q_T/F = 21.35187 \text{ MBT/M}^2$$

$$q_r' = Q_T'/F = 19.15221 \text{ MBT/M}^2$$

Удельный выброс оксидов азота при слоевом сжигании твердого топлива (K_{NO2} , K_{NO2})

Характеристика гранулометрического состава угля $R_6 = 0 \%$

$$K_{NO2} = 0.011 \cdot \alpha_{\rm T} \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_{\rm T} \cdot q_{\rm T})^{0.25} = 0.38255 \ {\mbox{г/MДж}}$$

$$K_{NO2}$$
' = $0.011 \cdot \alpha_{\rm T} \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_{\rm r} \cdot q_{\rm r}')^{0.25} = 0.37229$ г/МДж

Коэффициент, учитывающий влияние рециркуляции дымовых газов, подаваемых в смеси с дутьевым воздухом под колосниковую решетку, на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов r=0 %

$$\beta_r = 1 - 0.075 \cdot (r^{0.5}) = 1$$

Выброс оксидов азота $(M_{NOx}, M_{NOx}', M_{NO}, M_{NO}', M_{NO2}, M_{NO2}')$

 $k_{\pi} = 0.001$ (для валового)

 $k_{\pi} = 1$ (для максимально-разового)

$$M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_r \cdot k_\pi = 62153.952 \cdot 10.24 \cdot 0.3825491 \cdot 1 \cdot 0.001 = 243.4758549$$
 т/год

$$M_{NOx}' = B_p' \cdot Q_r \cdot K_{NO2}' \cdot \beta_r \cdot k_\pi = 1.8703333 \cdot 10.24 \cdot 0.3722914 \cdot 1 = 7.1302038 \text{ g/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 31.6518611 \text{ т/год}$$

$$M_{NO}' = 0.13 \cdot M_{NOx}' = 0.9269265 \, \text{F/c}$$

$$M_{NO2} = 0.8 \cdot M_{NOx} = 194.7806839$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 5.704163 \text{ r/c}$$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_r' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2})

Тип топлива: Дрова, опилки, щепа, дробные отходы

$$\eta_{SO2}' = 0$$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц $(\eta_{SO2}"): 0$

Выброс диоксида серы (М_{SO2}, М_{SO2}')

$$M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 25.36896$$
 т/год

$$M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.80444444 \text{ g/c}$$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 2 %

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Твердое топливо. R=1

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $20.48 \text{ г/кг (г/нм}^3)$ или кг/т (кг/тыс.нм 3)

Маскимальное :71.68 г/кг (г/нм 3) или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 2 % Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 1272.912937$$
 т/год

$$M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 134.0654933 \text{ r/c}$$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса $A_r' = 3.5 \%$

Доля золы, уносимой газами из котла $A_{vh} = 0.925$

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива $Q_r = 15.44 \text{ МДж/кг}$

4.2. Расчет количества летучей золы (М3, М3')

$$M_{\scriptscriptstyle 3} = 0.01 \cdot B \cdot A_{\scriptscriptstyle T} \cdot A_{\scriptscriptstyle {
m YH}} \cdot (1 - \nu_{\scriptscriptstyle 3}) = 1539.97515$$
 т/год

$$M_{3}' = 0.01 \cdot B' \cdot A_{r}' \cdot A_{vH} \cdot (1 - v_{3}) = 48.8322916 \text{ g/c}$$

4.3. Расчет количества коксовых остатков при сжигании твердого топлива $(M_{\kappa}, M_{\kappa}')$

$$M_{\kappa} = 0.01 \cdot B \cdot (1 - \nu_3) \cdot (q_{4 \text{ уноса}} \cdot Q_r / 32.68) = 37.2616304 \text{ т/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ vHoca}} \cdot Q_r/32.68) = 1.1815585 \text{ r/c}$$

5. Расчетное определение выбросов бенз(а)пирена при сжигании твердых топлив.

Коэффициент, учитывающий тип колосниковой решетки и вид топлива (А)

Для древесины и торфа. А=1.5

Температура насыщения при давлении в барабане паровых котлов или на выходе из котла для водогрейных котлов $(t_{\scriptscriptstyle H})$

$$t_{H}=1$$
 °C

Коэффициент, характеризующий температурный уровень экранов (R).

 $t_{H} < 150 \, ^{\circ}\text{C}; R = 290$

Коэффициент, учитывающий нагрузку котла (Кд)

$$K_{\pi} = (1/D_{\text{oth}})^{1.2} = 1$$

Коэффициент, учитывающий степень улавливания бенз(а)пирена золоуловителем (Кзу)

Степень очистки газов в золоуловителе $N_{_{3y}}=0$

Коэффициент, учитывающий снижение улавливающей способности золоуловителем бенз(a)пирена z = 0.8;

$$K_{3y} = 1 - N_{3y} \cdot z = 1$$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Коэффициент избытка воздуха на выходе из топки (α_T ''): 1

$$C_{\text{бII}} = 0.001 \cdot (A \cdot Q_{\text{r}} / \exp(2.5 \cdot \alpha_{\text{T}}) + R/t_{\text{H}}) \cdot K_{\pi} \cdot K_{3y} = 0.2912608 \text{ Mg/m}^3$$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.4

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

$$V_{cr} = K \cdot Q_r = 4.096 \text{ м}^3/кг$$
 топлива (м $^3/м^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

$$M_{\text{б\pi}} = C_{\text{б\pi}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\pi}$$

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 62153.952 \text{ т/год (тыс.м}^3/год)$$

$$B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 6.7332 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{\rm \delta\pi} = 0.2912608~\text{mg/m}^3$

Коэффициент пересчета (k_п)

 $k_{\text{п}} = 0.000001$ (для валового)

 $k_{\rm n} = 0.000278$ (для максимально-разового)

 $\mathbf{M}_{\text{би}} = 0.2912608 \cdot 4.096 \cdot 62153.952 \cdot 0.000001 = 0.07414993458 \text{ т/год}$

$$M_{6\pi}$$
' = 0.2912608·4.096·6.7332·0.000278 = 0.00223310084 г/с

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №501 Труба

Источник выделения: №2 Котел Е-40-1,6 Р №1 резервное топливо

Результаты расчетов

	t cojvidiui di pue ie iod							
Код	Наименование выброса	Без учета	и очистки	Очистка	С учетом очистки			
		Максимально-ра	Валовый выброс,	%	Максимально-ра	Валовый выброс,		
		зовый выброс,	т/год		зовый выброс,	т/год		
		г/с			г/с			
0301	Азот (IV) оксид	4.8225125	164.674865	0,00	4.8225125	164.674865		
0304	Азот (II) оксид	0.7836583	26.759666	0,00	0.7836583	26.759666		
0328	Углерод (Сажа)	1.0330477	32.578193	99,86	0.0014463	0.045609		
0330	Сера диоксид	0.7033333	22.180320	0,00	0.7033333	22.180320		
0337	Углерод оксид	117.2147198	1112.919736	0,00	117.2147198	1112.919736		
0703	Бенз/а/пирен	0.00195242103	0.06482998424	0,00	0.0019524	0.064830		
2902	Взвешенные вещества	42.6945312	1346.414738	99,86	0.0597723	1.884981		

Исходные данные

Наименование топлива: Дрова

Тип топлива: Дрова, опилки, щепа, дробные отходы

Характер топлива: Торф, дрова

Фактический расход топлива (В, В')

B = 55450.8 т/годB' = 1758.33333 г/c

1. Расчет выбросов оксидов азота при слоевом сжигании твердого топлива

Расчетный расход топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q₄)

Среднее: 2 % Максимальное: 7 %

$$B_p = B \cdot (1-q_4/100) = 54341.784$$
т/год

$$B_p' = B' \cdot (1-q_4/100) = 1.63525 \text{ kg/c}$$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 15.44 \text{ МДж/кг}$

Коэффициент избытка воздуха в топке $\alpha_{\rm T}$ =1.4

Тепловое напряжение зеркала горения (qr, qr')

Время работы котла за год Time = 8280 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{r}, Q_{r})

$$Q_{\text{T}} = B_{\text{p}} / \text{Time} / 3.6 \cdot Q_{\text{r}} = 18.66814 \text{ MB}_{\text{T}}$$

$$Q_{\rm T}' = B_{\rm p}' \cdot Q_{\rm r} = 16.74496 \text{ MBT}$$

Площадь горения $F = 1 \text{ м}^2$

$$q_r = Q_T/F = 18.66814 \text{ MBT/M}^2$$

$$q_r' = Q_r'/F = 16.74496 \text{ MB}_T/M^2$$

Удельный выброс оксидов азота при слоевом сжигании твердого топлива (K_{NO2}, K_{NO2}')

Характеристика гранулометрического состава угля $R_6 = 0 \%$

$$K_{NO2} = 0.011 \cdot \alpha_{r} \cdot (1 + 5.46 \cdot (100 - R_{6})/100) \cdot (Q_{r} \cdot q_{r})^{0.25} = 0.36992 \ r/MДж$$

$$K_{NO2}$$
' = $0.011 \cdot \alpha_r \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_r \cdot q_r')^{0.25} = 0.36$ г/МДж

Коэффициент, учитывающий влияние рециркуляции дымовых газов, подаваемых в смеси с дутьевым воздухом под колосниковую решетку, на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов r=0 %

$$\beta_r = 1 - 0.075 \cdot (r^{0.5}) = 1$$

Выброс оксидов азота $(M_{NOx}, M_{NOx}', M_{NO}, M_{NO}', M_{NO2}, M_{NO2}')$

 $k_{\pi} = 0.001$ (для валового)

 $k_{\pi} = 1$ (для максимально-разового)

$$M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_r \cdot k_{II} = 54341.784 \cdot 10.24 \cdot 0.3699163 \cdot 1 \cdot 0.001 = 205.8435813$$
 т/год

$$M_{NOx}' = B_p' \cdot Q_r \cdot K_{NO2}' \cdot \beta_r \cdot k_{\pi} = 1.63525 \cdot 10.24 \cdot 0.3599973 \cdot 1 = 6.0281406 \text{ g/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 26.7596656 \text{ т/год}$$

$$M_{NO}' = 0.13 \cdot M_{NOx}' = 0.7836583 \, \text{r/c}$$

$$M_{NO2} = 0.8 \cdot M_{NOx} = 164.6748651$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 4.8225124 \, \text{r/c}$$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 55450.8 т/год

B' = 1758.33333 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_r' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2}')

Тип топлива: Дрова, опилки, щепа, дробные отходы

$$\eta_{SO2}' = 0$$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц $(\eta_{SO2}"): 0$

Выброс диоксида серы (М_{SO2}, М_{SO2}')

$$M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 22.18032$$
 т/год

$$M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.7033333 \text{ g/c}$$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 55450.8 т/гол

B' = 1758.33333 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q₃):

Среднее: 2 %

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Твердое топливо. R=1

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $20.48 \text{ г/кг (г/нм}^3)$ или кг/т (кг/тыс.нм 3)

Маскимальное :71.68 г/кг (г/нм 3) или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q₄)

Среднее: 2 %

Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 1112.9197363$$
 т/год

$$M_{CO}$$
' = 0.001·B'· C_{CO} ·(1-q₄/100) = 117.2147198 Γ /c

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 55450.8 т/год

B' = 1758.33333 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса $A_r' = 3.5 \%$

Доля золы, уносимой газами из котла $A_{vh} = 0.925$

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива $Q_r = 15.44 \text{ МДж/кг}$

4.2. Расчет количества летучей золы (М3, М3')

$$M_3 = 0.01 \cdot B \cdot A_r \cdot A_{VH} \cdot (1 - \nu_3) = 1346.4147375$$
 т/год

$$M_{3}' = 0.01 \cdot B' \cdot A_{r}' \cdot A_{vH} \cdot (1 - v_{3}) = 42.6945312 \text{ r/c}$$

4.3. Расчет количества коксовых остатков при сжигании твердого топлива $(M_{\kappa}, M_{\kappa}')$

$$M_{K} = 0.01 \cdot B \cdot (1 - v_{3}) \cdot (q_{4 \text{ уноса}} \cdot Q_{r}/32.68) = 32.5781934 \text{ т/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r / 32.68) = 1.0330477 \text{ g/c}$$

5. Расчетное определение выбросов бенз(а)пирена при сжигании твердых топлив.

Коэффициент, учитывающий тип колосниковой решетки и вид топлива (А)

Для древесины и торфа. А=1.5

Температура насыщения при давлении в барабане паровых котлов или на выходе из котла для водогрейных котлов $(t_{\scriptscriptstyle H})$

$$t_{\rm H}=1$$
 °C

Коэффициент, характеризующий температурный уровень экранов (R).

 $t_{H} < 150 \, ^{\circ}\text{C}; R = 290$

Коэффициент, учитывающий нагрузку котла (Кд)

$$K_{\pi} = (1/D_{\text{oth}})^{1.2} = 1$$

Коэффициент, учитывающий степень улавливания бенз(а)пирена золоуловителем (Кзу)

Степень очистки газов в золоуловителе $N_{_{3y}}=0$

Коэффициент, учитывающий снижение улавливающей способности золоуловителем бенз(a) пирена z = 0.8;

$$K_{3y} = 1 - N_{3y} \cdot z = 1$$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Коэффициент избытка воздуха на выходе из топки (α_T ''): 1

$$C_{6\pi} = 0.001 \cdot (A \cdot Q_r / exp(2.5 \cdot \alpha_T)) + R/t_H) \cdot K_{\pi} \cdot K_{3y} = 0.2912608 \text{ MG/M}^3$$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.4

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

$$V_{cr} = K \cdot Q_r = 4.096 \text{ м}^3/\text{кг}$$
 топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

$$M_{\text{б\pi}} = C_{\text{б\pi}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\pi}$$

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 54341.784 \text{ т/год (тыс.м}^3/\text{год)}$$

$$B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 5.8869 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{6\pi} = 0.2912608 \text{ M}\Gamma/\text{M}^3$

Коэффициент пересчета (k_п)

 $k_{\text{п}} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $\mathbf{M}_{\text{би}} = 0.2912608 \cdot 4.096 \cdot 54341.784 \cdot 0.000001 = 0.06482998424 \text{ т/год}$

$$M_{6\pi}$$
' = 0.2912608·4.096·5.8869·0.000278 = 0.00195242103 г/с

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России $09.07.1999~\Gamma$.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №501 Труба

Источник выделения: №3 Котел Е-40-1,6 Р №1 растопка

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	1	выброс, г/с	Ī
0301	Азот (IV) оксид	0.0079494	0.000005
0304	Азот (II) оксид	0.0012918	0.000001
0328	Углерод (Сажа)	0.0061302	0.000004
0330	Сера диоксид	0.0012692	0.000001
0337	Углерод оксид	0.4521178	0.000084
0703	Бенз/а/пирен	0.0000001157	0.00000000001

Исходные данные

Наименование топлива: Дизельное топливо

Тип топлива: Мазут

Характер топлива: Мазут, нефть, диз. топл.

Фактический расход топлива (В, В')

B = 0.002 т/годB' = 3.23775 г/с

Котел паровой. Фактическая паропроизводительность котла D=0 т/ч

Расчет выбросов оксидов азота при сжигании мазута

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 0.002$$
 т/год

$$B_p' = B' \cdot (1-q_4/100) = 0.00301 \text{ kg/c}$$

Потери тепла от механической неполноты сгорания (q4):

Среднее: 2 % Максимальное: 7 %

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 33 \text{ МДж/кг}$

Удельный выброс оксидов азота при сжигании мазута (K_{NO2} , K_{NO2} ')

Котел паровой

Фактическая паропроизводительность котла D=0 т/ч

$$K_{NO2} = K_{NO2}' = 0.01 \cdot (D^{0.5}) + 0.1 = 0.1 \ г/МДж$$

Коэффициент, учитывающий принципиальную конструкцию горелок (Вк)

Тип горелки: Дутьевая напорного типа или отсутствует

 $\beta_{\kappa} = 1$

Коэффициент, учитывающий температуру воздуха (β_t)

Температура горячего воздуха $t_{rb} = 30 \, ^{\circ}\text{C}$

$$\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1$$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (Ва)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (Вг)

Степень рециркуляции дымовых газов r= 0 %

$$\beta_r = 0.17 \cdot (r^{0.5}) = 0$$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0$ %

$$\beta_d = 0.018 \cdot \delta = 0$$

Выброс оксидов азота (M_{NOx} , M_{NOx} , M_{NO} , M_{NO} , M_{NO2} , M_{NO2} , M_{NO2})

kп = 0.001 (для валового)

kп = 1 (для максимально-разового)

$$M_{NOx} = Bp \cdot Q_r \cdot K_{NO2} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_n = 0.00196 \cdot 33 \cdot 0.1 \cdot 1 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.0000065 \text{ T/rom}$$

$$M_{NOx}' = Bp' \cdot Q_r \cdot K_{NO2}' \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_{rr} = 0.0030111 \cdot 33 \cdot 0.1 \cdot 1 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.0099367 \text{ r/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 0.0000008$$
 т/год

$$M_{NO}$$
' = 0.13 · M_{NOx} ' = 0.0012918 Γ/c

$$M_{NO2} = 0.8 \cdot M_{NOx} = 0.0000052$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0079493 \ r/c$$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 0.002 т/год

B' = 3.23775 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_r' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2}')

Тип топлива: Мазут

 $\eta_{SO2}' = 0.02$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц $(\eta_{SO2}"): 0$

Выброс диоксида серы (М_{SO2}, М_{SO2}')

$$M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) = 0.00000008$$
 т/год

$$M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.0012692 \text{ r/c}$$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 0.002 т/год

 $B' = 3.23775 \Gamma/c$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q3):

Среднее: 2 %

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Мазут. R=0.65

Низшая теплота сгорания топлива (Q_r): 33 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \!\cdot\! R \!\cdot\! Q_r$

Среднее: 42.9 г/кг (Γ /нм³) или кг/т (кг/тыс.нм³)

Маскимальное :150.15 г/кг (г/нм 3) или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 2 % Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1 - q_4/100) = 0.0000841$$
 т/год

$$M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 0.4521178 \, \Gamma/c$$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 0.002 т/год

B' = 3.23775 r/c

Зольность топлива на рабочую массу (A_r, A_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса A_{r} = 3.5 %

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива $Q_r = 33 \text{ МДж/кг}$

4.2. Расчет количества сажи при сжигании мазута (M_{κ}, M_{κ} ')

$$M_{K} = 0.01 \cdot B \cdot (1 - v_{3}) \cdot (q_{4 \text{ vHoca}} \cdot Q_{r}/32.68) = 0.0000038 \text{ т/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ vHoca}} \cdot Q_r/32.68) = 0.0061302 \text{ g/c}$$

5. Расчет выбросов бенз(а)пирена паровыми котлами

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (К_л):

Относительная нагрузка котла Dотн = 0.75

$$K_{\pi} = 2.6-3.2 \cdot (D_{\text{OTH}}-0.5) = 1.8$$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (\mathbf{K}_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

$$K_p = 4.15 \cdot 0 + 1 = 1$$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания ($K_{c\tau}$)

Доля воздуха, подаваемая помимо горелок (над ними) K_{cr} : 0

$$K_{cr} = K_{cr}'/0.14+1 = 1$$

Теплонапряжение топочного объема (qv)

Расчетный расход топлива на номинальной нагрузке $B_p = B_H \cdot (1-q_4/100)$

Среднее: 0 кг/с

Максимальное: 0 кг/с

Фактический расход топлива на номинальной нагрузке ($B_{\scriptscriptstyle H}$): 0 кг/с

Низшая теплота сгорания топлива (Q_r): 33000 кДж/кг

Объем топочной камеры (V_T): 1 м³

Теплонапряжение топочного объема $q_v = B_p \cdot Q_r / V_T$

Среднее: $0.33000/1 = 0 \text{ кВт/м}^3$

Максимальное $0.33000/1 = 0 \text{ кBт/м}^3$

Концентрация бенз(а)пирена (Сбп)

Коэффициент избытка воздуха на выходе из топки (α_T "): 1

Котел с паромеханической форсункой. R = 0.75.

Среднее: $C_{6\pi}$ ' = 0.001 · (R·(0.34+0.00042 · q_v)/Exp(3.8·(α_T ''-1))· K_{π} · K_p · $K_{c\tau}$ = 0.000459 мг/м³

Максимальное: $C_{6\pi}$ ' = 0.001 · $(R \cdot (0.34 + 0.00042 \cdot q_v) / Exp(3.8 \cdot (\alpha_T)' - 1)) \cdot K_{\pi} \cdot K_{\rho} \cdot K_{c\tau} = 0.000459 \text{ мг/м}^3$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Среднее: $C_{6\pi} = C_{6\pi}' \cdot \alpha_T'' / \alpha_O = 0.0003279 \text{ мг/м}^3$

Максимальное: $C_{6\pi} = C_{6\pi}' \cdot \alpha_T'' / \alpha_O = 0.0003279 \text{ мг/м}^3$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.355

Низшая теплота сгорания топлива (Q_r): 33 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 11.715 \text{ м}^3/кг$ топлива (м $^3/м^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

 $M_{\text{dif}} = C_{\text{dif}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\text{ff}}$

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 0.002 \text{ т/год (тыс.м}^3/год)$$

$$B_p' = B' \cdot (1 - q_4/100) \cdot 0.0036 = 0.01084 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{\delta_\Pi} = 0.0003279 \text{ MG/m}^3$

Коэффициент пересчета (k_п)

 $k_{\rm n} = 0.000001$ (для валового)

 $k_{\pi} = 0.000278$ (для максимально-разового)

 $\mathbf{M}_{\mathrm{б\pi}} = 0.0003279 \cdot 11.715 \cdot 0.00196 \cdot 0.000001 = 0.00000000001$ т/год

 $M_{\text{6\pi}}\text{'} = 0.0003279 \cdot 11.715 \cdot 0.01084 \cdot 0.000278 = 0.00000001157 \text{ r/c}$

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в

атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.

5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №502 Труба Источник выделения: №1 Котел E-40-1,6 Р №2

Результаты расчетов

Код	Наименование выброса	Без учета очистки		Очистка	С учетом очистки	
		Максимально-р	Валовый	%	Максимально-разо	Валовый выброс,
		азовый выброс,	выброс, т/год		вый выброс, г/с	т/год
		г/с				
0301	Азот (IV) оксид	5.7041630	214.404401	0,00	5.7041630	214.404401
0304	Азот (II) оксид	0.9269265	34.840715	0,00	0.9269265	34.840715
0328	Углерод (Сажа)	1.1815585	37.261630	99,86	0.0016542	0.052166
0330	Сера диоксид	0.8044444	25.368960	0,00	0.8044444	25.368960
0337	Углерод оксид	134.0654933	1272.912937	0,00	134.0654933	1272.912937
0703	Бенз/а/пирен	0.00223310084	0.07414993458	0,00	0.0022331	0.074150
2902	Взвешенные вещества	48.8322916	1539.975150	99,86	0.0683652	2.155965

Исходные данные

Наименование топлива: Дрова

Тип топлива: Дрова, опилки, щепа, дробные отходы

Характер топлива: Торф, дрова

Фактический расход топлива (В, В')

B = 63422.4 т/годB' = 2011.11111 г/c

1. Расчет выбросов оксидов азота при слоевом сжигании твердого топлива

Расчетный расход топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q₄)

Среднее: 2 % Максимальное: 7 %

$$B_p = B \cdot (1-q_4/100) = 62153.952 \text{ т/год}$$

$$B_p' = B' \cdot (1-q_4/100) = 1.87033 \text{ kg/c}$$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 15.44 \text{ МДж/кг}$

Коэффициент избытка воздуха в топке α_r =1.4

Тепловое напряжение зеркала горения (qr, qr')

Время работы котла за год Time = 5640 час

Фактическая тепловая мощность котла по введенному в топку теплу $(Q_{\scriptscriptstyle T},Q_{\scriptscriptstyle T}')$

$$Q_{\scriptscriptstyle T} = B_p/Time/3.6 \cdot Q_r = 31.34636 \; MB_T$$

$$Q_{\rm T}' = B_{\rm p}' \cdot Q_{\rm r} = 19.15221 \text{ MBT}$$

Площадь горения $F = 1 \text{ м}^2$

$$q_r = Q_T/F = 31.34636 \text{ MBT/M}^2$$

$$q_r' = Q_r'/F = 19.15221 \text{ MB}_T/M^2$$

Удельный выброс оксидов азота при слоевом сжигании твердого топлива (K_{NO2}, K_{NO2}')

Характеристика гранулометрического состава угля $R_6 = 0 \%$

$$K_{NO2} = 0.011 \cdot \alpha_{\rm T} \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_{\rm T} \cdot q_{\rm T})^{0.25} = 0.42109 \ {\mbox{г/MДж}}$$

$$K_{NO2}$$
' = $0.011 \cdot \alpha_{\rm T} \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_{\rm r} \cdot q_{\rm r}')^{0.25} = 0.37229$ г/МДж

Коэффициент, учитывающий влияние рециркуляции дымовых газов, подаваемых в смеси с дутьевым воздухом под колосниковую решетку, на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов r=0 %

$$\beta_r = 1 - 0.075 \cdot (r^{0.5}) = 1$$

Выброс оксидов азота $(M_{NOx}, M_{NOx}', M_{NO}, M_{NO}', M_{NO2}, M_{NO2}')$

 $k_{\rm H} = 0.001$ (для валового)

 $k_{II} = 1$ (для максимально-разового)

$$M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_r \cdot k_\pi = 62153.952 \cdot 10.24 \cdot 0.4210901 \cdot 1 \cdot 0.001 = 268.0055006$$
 т/год

$$M_{NOx}' = B_n' \cdot O_r \cdot K_{NO2}' \cdot \beta_r \cdot k_{\pi} = 1.8703333 \cdot 10.24 \cdot 0.3722914 \cdot 1 = 7.1302038 \text{ g/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 34.8407151 \text{ т/год}$$

$$M_{NO}' = 0.13 \cdot M_{NOx}' = 0.9269265 \, \text{F/c}$$

$$M_{NO2} = 0.8 \cdot M_{NOx} = 214.4044005$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 5.704163 \, \text{r/c}$$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_r' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2})

Тип топлива: Дрова, опилки, щепа, дробные отходы

$$\eta_{SO2}' = 0$$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц (η_{SO2} ''): 0

Выброс диоксида серы (М_{SO2}, М_{SO2}')

$$M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 25.36896$$
 т/год

$$M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.80444444 \text{ g/c}$$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q₃):

Среднее: 2 %

среднее. 2 70

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Твердое топливо. R=1

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $20.48 \, \Gamma/\kappa\Gamma \, (\Gamma/HM^3) \, или \, \kappa\Gamma/T \, (\kappa\Gamma/Tыс.HM^3)$

Маскимальное :71.68 г/кг (г/нм 3) или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q₄)

Среднее: 2 % Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 1272.912937$$
 т/год

$$M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 134.0654933 \text{ r/c}$$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 63422.4 т/год

B' = 2011.111111 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса A_{r} = 3.5 %

Доля золы, уносимой газами из котла $A_{vh} = 0.925$

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива $Q_r = 15.44 \text{ МДж/кг}$

4.2. Расчет количества летучей золы (М3, М3')

$$M_{\scriptscriptstyle 3} = 0.01 \cdot B \cdot A_{\scriptscriptstyle T} \cdot A_{\scriptscriptstyle {
m YH}} \cdot (1 - \nu_{\scriptscriptstyle 3}) = 1539.97515$$
 т/год

$$M_{3}' = 0.01 \cdot B' \cdot A_{r}' \cdot A_{vH} \cdot (1 - v_{3}) = 48.8322916 \text{ g/c}$$

4.3. Расчет количества коксовых остатков при сжигании твердого топлива (M_{κ}, M_{κ})

$$M_{K} = 0.01 \cdot B \cdot (1 - v_{3}) \cdot (q_{4 \text{ уноса}} \cdot Q_{r}/32.68) = 37.2616304 \text{ т/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ vhoca}} \cdot Q_r / 32.68) = 1.1815585 \text{ g/c}$$

5. Расчетное определение выбросов бенз(а)пирена при сжигании твердых топлив.

Коэффициент, учитывающий тип колосниковой решетки и вид топлива (А)

Для древесины и торфа. А=1.5

Температура насыщения при давлении в барабане паровых котлов или на выходе из котла для водогрейных котлов $(t_{\scriptscriptstyle H})$

t_н=1 °C

Коэффициент, характеризующий температурный уровень экранов (R).

 $t_{H} < 150 \, ^{\circ}\text{C}; R = 290$

Коэффициент, учитывающий нагрузку котла (Кд)

$$K_{\pi} = (1/D_{\text{OTH}})^{1.2} = 1$$

Коэффициент, учитывающий степень улавливания бенз(а)пирена золоуловителем (Кзу)

Степень очистки газов в золоуловителе $N_{_{3y}}=0$

Коэффициент, учитывающий снижение улавливающей способности золоуловителем бенз(a)пирена z = 0.8;

$$K_{3y} = 1 - N_{3y} \cdot z = 1$$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Коэффициент избытка воздуха на выходе из топки (α_T ''): 1

$$C_{6\pi} = 0.001 \cdot (A \cdot Q_r / exp(2.5 \cdot \alpha_T)) + R/t_H) \cdot K_{\pi} \cdot K_{3y} = 0.2912608 \text{ MG/M}^3$$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.4

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

$$V_{cr} = K \cdot Q_r = 4.096 \text{ м}^3/кг$$
 топлива (м $^3/м^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

$$M_{\text{б\pi}} = C_{\text{б\pi}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\pi}$$

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 62153.952 \text{ т/год (тыс.м}^3/год)$$

$$B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 6.7332 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{6\pi} = 0.2912608 \text{ M}\Gamma/\text{M}^3$

Коэффициент пересчета (k_п)

 $k_{\text{п}} = 0.000001$ (для валового)

 $k_{\rm n} = 0.000278$ (для максимально-разового)

 $\mathbf{M}_{\text{би}} = 0.2912608 \cdot 4.096 \cdot 62153.952 \cdot 0.000001 = 0.07414993458 \text{ т/год}$

$$M_{6\pi}$$
' = 0.2912608·4.096·6.7332·0.000278 = 0.00223310084 г/с

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №502 Труба

Источник выделения: №2 Котел Е-40-1,6 Р №2 резервное топливо

Результаты расчетов

Код	Наименование выброса	Без учета	Без учета очистки		С учетом	очистки
		Максимально-ра	Валовый выброс,	%	Максимально-разо	Валовый выброс,
		зовый выброс,	т/год		вый выброс, г/с	т/год
		г/с				
0301	Азот (IV) оксид	4.8225125	164.674865	0,00	4.8225125	164.674865
0304	Азот (II) оксид	0.7836583	26.759666	0,00	0.7836583	26.759666
0328	Углерод (Сажа)	1.0330477	32.578193	99,86	0.0014463	0.045609
0330	Сера диоксид	0.7033333	22.180320	0,00	0.7033333	22.180320
0337	Углерод оксид	117.2147198	1112.919736	0,00	117.2147198	1112.919736
0703	Бенз/а/пирен	0.00195242103	0.06482998424	0,00	0.0019524	0.064830
2902	Взвешенные вещества	42.6945312	1346.414738	99,86	0.0597723	1.884981

Исходные данные

Наименование топлива: Дрова

Тип топлива: Дрова, опилки, щепа, дробные отходы

Характер топлива: Торф, дрова

Фактический расход топлива (В, В')

B = 55450.8 т/годB' = 1758.33333 г/c

1. Расчет выбросов оксидов азота при слоевом сжигании твердого топлива

Расчетный расход топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q₄)

Среднее: 2 % Максимальное: 7 %

 $B_p = B \cdot (1-q_4/100) = 54341.784 \text{ т/год}$

 $B_p' = B' \cdot (1-q_4/100) = 1.63525 \text{ kg/c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 15.44 \text{ МДж/кг}$

Коэффициент избытка воздуха в топке $\alpha_{\rm T}$ =1.4

Тепловое напряжение зеркала горения (qr, qr')

Время работы котла за год Time = 8280 час

Фактическая тепловая мощность котла по введенному в топку теплу $(Q_{\scriptscriptstyle T},Q_{\scriptscriptstyle T}')$

 $Q_{T} = B_{p}/Time/3.6 \cdot Q_{r} = 18.66814 \text{ MBT}$

 $Q_{\rm T}' = B_{\rm p}' \cdot Q_{\rm r} = 16.74496 \text{ MBT}$

Площадь горения $F = 1 \text{ м}^2$

 $q_r = Q_T/F = 18.66814 \text{ MBT/M}^2$

 $q_r' = Q_r'/F = 16.74496 \text{ MB}_T/M^2$

Удельный выброс оксидов азота при слоевом сжигании твердого топлива (K_{NO2}, K_{NO2}')

Характеристика гранулометрического состава угля $R_6 = 0 \%$

$$K_{NO2} = 0.011 \cdot \alpha_{\rm T} \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_{\rm r} \cdot q_{\rm r})^{0.25} = 0.36992 \ {\mbox{г/MДж}}$$

$$K_{NO2}$$
' = $0.011 \cdot \alpha_r \cdot (1 + 5.46 \cdot (100 - R_6)/100) \cdot (Q_r \cdot q_r')^{0.25} = 0.36$ г/МДж

Коэффициент, учитывающий влияние рециркуляции дымовых газов, подаваемых в смеси с дутьевым воздухом под колосниковую решетку, на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов r=0 %

$$\beta_r = 1 - 0.075 \cdot (r^{0.5}) = 1$$

Выброс оксидов азота (M_{NOx} , M_{NOx} , M_{NO} , M_{NO} , M_{NO2} , M_{NO2} , M_{NO2})

 $k_{\pi} = 0.001$ (для валового)

 $k_{\pi} = 1$ (для максимально-разового)

$$M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_r \cdot k_{II} = 54341.784 \cdot 10.24 \cdot 0.3699163 \cdot 1 \cdot 0.001 = 205.8435813$$
 т/год

$$M_{NOx}' = B_p' \cdot Q_r \cdot K_{NO2}' \cdot \beta_r \cdot k_{\pi} = 1.63525 \cdot 10.24 \cdot 0.3599973 \cdot 1 = 6.0281406 \text{ g/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 26.7596656 \text{ т/год}$$

$$M_{NO}$$
' = 0.13 · M_{NOx} ' = 0.7836583 г/с

$$M_{NO2} = 0.8 \cdot M_{NOx} = 164.6748651$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 4.8225124 \, \text{r/c}$$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 55450.8 т/год

B' = 1758.33333 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_r' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2})

Тип топлива: Дрова, опилки, щепа, дробные отходы

$$\eta_{SO2}' = 0$$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц $(\eta_{SO2}"): 0$

Выброс диоксида серы (М_{SO2}, М_{SO2}')

$$M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 22.18032$$
 т/год

$$M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.7033333 \text{ g/c}$$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 55450.8 т/гол

B' = 1758.33333 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q₃):

Среднее: 2 %

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Твердое топливо. R=1

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $20.48 \, \Gamma/\kappa\Gamma \, (\Gamma/HM^3) \, или \, \kappa\Gamma/T \, (\kappa\Gamma/Tыс.HM^3)$

Маскимальное :71.68 г/кг (Γ /нм³) или кг/т (кг/тыс.нм³)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 2 % Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 1112.9197363$$
 т/год

$$M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 117.2147198 \ r/c$$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 55450.8 т/год

B' = 1758.33333 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса A_{r} = 3.5 %

Доля золы, уносимой газами из котла $A_{vH} = 0.925$

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива Q_r = 15.44 МДж/кг

4.2. Расчет количества летучей золы (М3, М3')

$$M_3 = 0.01 \cdot B \cdot A_r \cdot A_{VH} \cdot (1 - \nu_3) = 1346.4147375$$
 т/год

$$M_{3}' = 0.01 \cdot B' \cdot A_{r}' \cdot A_{vH} \cdot (1 - v_{3}) = 42.6945312 \text{ r/c}$$

4.3. Расчет количества коксовых остатков при сжигании твердого топлива (M_{κ}, M_{κ})

$$M_{K} = 0.01 \cdot B \cdot (1 - v_{3}) \cdot (q_{4 \text{ уноса}} \cdot Q_{r}/32.68) = 32.5781934 \text{ т/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r / 32.68) = 1.0330477 \text{ g/c}$$

5. Расчетное определение выбросов бенз(а)пирена при сжигании твердых топлив.

Коэффициент, учитывающий тип колосниковой решетки и вид топлива (А)

Для древесины и торфа. А=1.5

Температура насыщения при давлении в барабане паровых котлов или на выходе из котла для водогрейных котлов $(t_{\scriptscriptstyle H})$

$$t_{\rm H}=1$$
 °C

Коэффициент, характеризующий температурный уровень экранов (R).

 $t_{H} < 150 \, ^{\circ}\text{C}; R = 290$

Коэффициент, учитывающий нагрузку котла (Кд)

$$K_{\pi} = (1/D_{\text{OTH}})^{1.2} = 1$$

Коэффициент, учитывающий степень улавливания бенз(а)пирена золоуловителем (Кзу)

Степень очистки газов в золоуловителе $N_{_{3y}}=0$

Коэффициент, учитывающий снижение улавливающей способности золоуловителем бенз(а)пирена z = 0.8;

$$K_{3y} = 1 - N_{3y} \cdot z = 1$$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Коэффициент избытка воздуха на выходе из топки (α_T ''): 1

$$C_{6\pi} = 0.001 \cdot (A \cdot Q_r / exp(2.5 \cdot \alpha_T)) + R/t_H \cdot K_{\pi} \cdot K_{\pi} = 0.2912608 \text{ Mg/m}^3$$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.4

Низшая теплота сгорания топлива (Q_r): 15.44 МДж/кг (МДж/нм³)

$$V_{cr} = K \cdot Q_r = 4.096 \text{ м}^3/\text{кг}$$
 топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

$$M_{\text{б\pi}} = C_{\text{б\pi}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\pi}$$

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 54341.784 \text{ т/год (тыс.м}^3/год)$$

$$B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 5.8869 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{\rm \delta\pi} = 0.2912608~\text{mg/m}^3$

Коэффициент пересчета (k_п)

 $k_{\text{п}} = 0.000001$ (для валового)

 $k_{\rm n} = 0.000278$ (для максимально-разового)

 $M_{6\pi} = 0.2912608 \cdot 4.096 \cdot 54341.784 \cdot 0.000001 = 0.06482998424$ т/год

$$M_{6\pi}$$
' = 0.2912608·4.096·5.8869·0.000278 = 0.00195242103 г/с

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России $09.07.1999~\Gamma$.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.5.60 от 20.05.2020

Copyright© 1996-2020 Фирма «Интеграл» Программа зарегистрирована на: Регистрационный номер:

Объект: №604 Дальагротерминал котельная

Площадка: 2 Цех: 1 Вариант: 1

Название источника выбросов: №502 Труба

Источник выделения: №3 Котел Е-40-1,6 Р №2 растопка

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
		выброс, г/с	
0301	Азот (IV) оксид	0.0079494	0.000005
0304	Азот (II) оксид	0.0012918	0.000001
0328	Углерод (Сажа)	0.0061302	0.000004
0330	Сера диоксид	0.0012692	0.000001
0337	Углерод оксид	0.4521178	0.000084
0703	Бенз/а/пирен	0.0000001157	0.0000000001

Исходные данные

Наименование топлива: Дизельное топливо

Тип топлива: Мазут

Характер топлива: Мазут, нефть, диз. топл.

Фактический расход топлива (В, В')

B = 0.002 т/годB' = 3.23775 г/с

Котел паровой. Фактическая паропроизводительность котла D=0 т/ч

Расчет выбросов оксидов азота при сжигании мазута

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 0.002$$
 т/год

$$B_p' = B' \cdot (1-q_4/100) = 0.00301 \text{ kg/c}$$

Потери тепла от механической неполноты сгорания (q4):

Среднее: 2 % Максимальное: 7 %

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 33 \text{ МДж/кг}$

Удельный выброс оксидов азота при сжигании мазута (K_{NO2} , K_{NO2} ')

Котел паровой

Фактическая паропроизводительность котла D = 0 т/ч

$$K_{NO2} = K_{NO2}' = 0.01 \cdot (D^{0.5}) + 0.1 = 0.1 \ г/МДж$$

Коэффициент, учитывающий принципиальную конструкцию горелок (Вк)

Тип горелки: Дутьевая напорного типа или отсутствует

 $\beta_{\kappa} = 1$

Коэффициент, учитывающий температуру воздуха (β_t)

Температура горячего воздуха $t_{rb} = 30 \, ^{\circ}\text{C}$

$$\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1$$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (Ва)

Котел работает в соответствии с режимной картой

 $\beta_a=1\,$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов r=0 %

 $\beta_r = 0.17 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0$ %

 $\beta_d = 0.018 \cdot \delta = 0$

Выброс оксидов азота (M_{NOx} , M_{NOx} ', M_{NO} , M_{NO} ', M_{NO2} , M_{NO2} ')

kп = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = Bp \cdot Q_r \cdot K_{NO2} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0.00196 \cdot 33 \cdot 0.1 \cdot 1 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.0000065 \text{ т/год}$

 $M_{NOx}' = Bp' \cdot Q_r \cdot K_{NO2}' \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_{rr} = 0.0030111 \cdot 33 \cdot 0.1 \cdot 1 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.0099367 \text{ r/c}$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0000008$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0012918 \, \text{r/c}$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.0000052$ т/год

 $M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0079493 \ r/c$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 0.002 т/год

B' = 3.23775 r/c

Содержание серы в топливе на рабочую массу (S_r, S_r')

 $S_r = 0.02 \%$ (для валового)

 $S_{r}' = 0.02 \%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2})

Тип топлива: Мазут

 $n_{SO2}' = 0.02$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц (η_{SO2} ''): 0

Выброс диоксида серы (М_{SO2}, М_{SO2}')

 $M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) = 0.0000008$ т/год

 $M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.0012692 \text{ g/c}$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 0.002 т/год

B' = 3.23775 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 2 %

ороднос. 2 70

Маскимальное: 7 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Мазут. R=0.65

Низшая теплота сгорания топлива (Q_r): 33 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $42.9 \, \Gamma/\kappa\Gamma \, (\Gamma/HM^3) \, или \, \kappa\Gamma/T \, (\kappa\Gamma/Tыс.HM^3)$

Маскимальное :150.15 г/кг (г/нм 3) или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 2 % Максимальное: 7 %

Выброс оксида углерода (Мсо, Мсо')

$$M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0.0000841$$
 т/год

$$M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 0.4521178 \text{ r/c}$$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 0.002 т/год

 $B' = 3.23775 \Gamma/c$

Зольность топлива на рабочую массу (A_r, A_r')

Для валового выброса $A_r = 3.5 \%$

Для максимально-разового выброса $A_r' = 3.5 \%$

Доля твердых частиц, улавливаемых в золоуловителях $v_3 = 0.25$

Потери тепла от механической неполноты сгорания топлива $q_{4 \text{ vhoca}} = 0.25 \%$

Низшая теплота сгорания топлива Q_r = 33 МДж/кг

4.2. Расчет количества сажи при сжигании мазута (M_{κ} , M_{κ} ')

$$M_{K} = 0.01 \cdot B \cdot (1 - v_{3}) \cdot (q_{4 \text{ vhoca}} \cdot Q_{r}/32.68) = 0.0000038 \text{ T/год}$$

$$M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ vHoca}} \cdot Q_r/32.68) = 0.0061302 \text{ r/c}$$

5. Расчет выбросов бенз(а)пирена паровыми котлами

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кл):

Относительная нагрузка котла Dотн = 0.75

$$K_{\pi} = 2.6-3.2 \cdot (D_{\text{OTH}}-0.5) = 1.8$$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

$$K_p = 4.15 \cdot 0 + 1 = 1$$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

$$K_{cr} = K_{cr}'/0.14+1 = 1$$

Теплонапряжение топочного объема (qv)

Расчетный расход топлива на номинальной нагрузке $B_p = B_H \cdot (1-q_4/100)$

Среднее: 0 кг/с

Максимальное: 0 кг/с

Фактический расход топлива на номинальной нагрузке ($B_{\scriptscriptstyle H}$): 0 кг/с

Низшая теплота сгорания топлива (Q_r): 33000 кДж/кг

Объем топочной камеры (V_T): 1 м³

Теплонапряжение топочного объема $q_v = B_p \cdot Q_r / V_T$

Среднее: $0.33000/1 = 0 \text{ кВт/м}^3$

Максимальное $0.33000/1 = 0 \text{ кBт/м}^3$

Концентрация бенз(а)пирена (Сбп)

Коэффициент избытка воздуха на выходе из топки (α_T "): 1

Котел с паромеханической форсункой. R = 0.75.

Среднее: $C_{6\pi}$ ' = 0.001 · (R·(0.34+0.00042 · q_v)/Exp(3.8·(α_T ''-1))· K_{π} · K_p · $K_{c\tau}$ = 0.000459 мг/м³

Максимальное: $C_{6\pi}$ ' = 0.001 · $(R \cdot (0.34 + 0.00042 \cdot q_v) / Exp(3.8 \cdot (\alpha_T)' - 1)) \cdot K_{\pi} \cdot K_{\rho} \cdot K_{c\tau} = 0.000459 \text{ мг/м}^3$

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_0 =1.4 ($C_{6\pi}$):

Среднее: $C_{6\pi} = C_{6\pi}$ '· α_T ''/ $\alpha_O = 0.0003279 \text{ мг/м}^3$

Максимальное: $C_{6\pi} = C_{6\pi}' \cdot \alpha_T'' / \alpha_O = 0.0003279 \text{ мг/м}^3$

Расчет объема сухих дымовых газов при нормальных условиях (α_0 =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.355

Низшая теплота сгорания топлива (Q_r): 33 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 11.715 \text{ м}^3/кг$ топлива (м $^3/м^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

 $M_{\text{dif}} = C_{\text{dif}} \cdot V_{\text{cr}} \cdot B_{\text{p}} \cdot k_{\text{ff}}$

Расчетный расход топлива (B_p, B_p')

$$B_p = B \cdot (1-q_4/100) = 0.002 \text{ т/год (тыс.м}^3/год)$$

$$B_p' = B' \cdot (1 - q_4/100) \cdot 0.0036 = 0.01084 \text{ T/y (TMC.M}^3/\text{y})$$

 $C_{6\pi} = 0.0003279 \text{ M}\Gamma/\text{M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm n} = 0.000001$ (для валового)

 $k_{\pi} = 0.000278$ (для максимально-разового)

 $\mathbf{M}_{\mathrm{б\pi}} = 0.0003279 \cdot 11.715 \cdot 0.00196 \cdot 0.000001 = 0.00000000001$ т/год

 $M_{\text{6\pi}}\text{'} = 0.0003279 \cdot 11.715 \cdot 0.01084 \cdot 0.000278 = 0.00000001157 \text{ r/c}$

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в

атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.

5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Валовые и максимальные выбросы предприятия №604, Дальгротерминал котельная, Белогорск, 2025 г.

Расчет произведен программой «АТП-Эколог», версия 3.20.22 от 14.09.2021 © 1995-2021 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
- 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Программа зарегистрирована на: ФГБОУ ВО "УГЛТУ" Регистрационный номер: 03-11-0036

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

```
1 - Бензин АИ-93 и аналогичные по содержанию свинца;
2 - Бензины А-92, А-76 и аналогичные по содержанию свинца;
3 - Дизельное топливо;
4 - Сжатый газ;
5 - Неэтилированный бензин;
6 - Сжиженный нефтяной газ.
                     Значения в графе "О/Г/К" имеют следующий смысл
       1. Для легковых автомобилей - рабочий объем ДВС:
1 - до 1.2 л
2 - свыше 1.2 до 1.8 л
3 - свыше 1.8 до 3.5 л
4 - свыше 3.5 л
       2. Для грузовых автомобилей - грузоподъемность:
1 - до 2 т
2 - свыше 2 до 5 т
3 - свыше 5 до 8 т
4 - свыше 8 до 16 т
5 - свыше 16 т
       3. Для автобусов - класс (габаритная длина) автобуса:
1 - Особо малый (до 5.5 м)
2 - Малый (6.0-7.5 м)
3 - Средний (8.0-10.0 м)
4 - Большой (10.5-12.0 м)
5 - Особо большой (16.5-24.0 м)
```

Белогорск, 2025 г.: среднемесячная и средняя минимальная температура воздуха, °С

Характеристики	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-27.1	-20.7	-10.9	1.8	10.3	17.4	21.1	18.7	11.7	1.3	-13.5	-24
Расчетные периоды года	X	X	X	П	T	Т	T	Т	Т	П	X	X
Средняя минимальная температура, °С	-27.1	-20.7	-10.9	1.8	10.3	17.4	21.1	18.7	11.7	1.3	-13.5	-24
Расчетные периоды года	X	X	X	П	Т	Т	T	T	T	П	X	X

В следующих месяцах значения среднемесячной и средней минимальной температур совпадают: Январь, Февраль, Март, Апрель, Май, Июнь, Июль, Август, Сентябрь, Октябрь, Ноябрь, Декабрь

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	105
Переходный	Апрель; Октябрь;	42
Холодный	Январь; Февраль; Март; Ноябрь; Декабрь;	105
Всего за год	Январь-Декабрь	252

Участок №1; Автомобиль для перевозки золы, тип - 7 - Внутренний проезд, №6410 цех №1, площадка №2

Общее описание участка

Протяженность внутреннего проезда (км): 0.025 - среднее время выезда (мин.): 30.0

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля		Место пр-ва	О/Г/К	Тип двиг.	Код топл.	Нейтрализат ор
	Грузовой	СНГ	4	Диз.	3	нет

: количество по месяцам

Месяц	Количество в сутки	Количество выезжающих за время Тср
Январь	1.00	1
Февраль	1.00	1
Март	1.00	1
Апрель	1.00	1
Май	1.00	1
Июнь	1.00	1
Июль	1.00	1
Август	1.00	1
Сентябрь	1.00	1
Октябрь	1.00	1
Ноябрь	1.00	1
Декабрь	1.00	1

Выбросы участка

Код в-ва	Название вешества	Макс. выброс (г/с)	Валовый выброс (т/год)
0-0 <i>u</i>	,	` '	` ′
	Оксиды азота (NOx)*	0.0000556	0.000025
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0000444	0.000020
0304	*Азот (II) оксид (Азота оксид)	0.0000072	0.000003
0328	Углерод (Сажа)	0.0000056	0.000002
0330	Сера диоксид-Ангидрид сернистый	0.0000093	0.000004
0337	Углерод оксид	0.0001028	0.000042
0401	Углеводороды**	0.0000167	0.000007
	В том числе:		
2732	**Керосин	0.0000167	0.000007

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000016
	ВСЕГО:	0.000016
Переходный		0.000007
	ВСЕГО:	0.000007
Холодный		0.000019
	ВСЕГО:	0.000019
Всего за год		0.000042

Максимальный выброс составляет: 0.0001028 г/с. Месяц достижения: Январь.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

 $M_i = \sum (M_1 \cdot L_p \cdot K_{HTD} \cdot N_{KP} \cdot D_p \cdot 10^{-6})$, где

 $N_{ exttt{KP}}$ - количество автомобилей данной группы, проезжающих по проезду в сутки;

 D_{p} - количество дней работы в расчетном периоде.

Расчет максимально разовых выбросов производился по формуле:

 $G_i=M_l \cdot L_p \cdot K_{HTP} \cdot N' / T_{CP} \Gamma/C (*)$

С учетом синхронности работы: $G_{\text{max}} = \Sigma \left(G_{\text{i}} \right)$, где

 M_1 - пробеговый удельный выброс (г/км);

 $L_p = 0.025 \ \text{км}$ - протяженность внутреннего проезда;

 $K_{\text{нтр}}$ - коэффициент, учитывающий снижение выброса при установленном нейтрализаторе (пробег и холостой ход);

 ${\tt N'}$ - наибольшее количество автомобилей, проезжающих по проезду в течение времени ${\tt Tcp}$, характеризующегося максимальной интенсивностью движения;

(*) В соответствии с методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2012 г.

 $T_{\text{cp}} = 1800$ сек. - среднее время наиболее интенсивного движения по проезду;

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
(д)	7.400	1.0	да	0.0001028

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000003
	ВСЕГО:	0.000003
Переходный		0.000001
	ВСЕГО:	0.000001
Холодный		0.000003
	ВСЕГО:	0.000003
Всего за год		0.000007

Максимальный выброс составляет: 0.0000167 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
(д)	1.200	1.0	да	0.0000167

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000011
	ВСЕГО:	0.000011
Переходный		0.000004
	ВСЕГО:	0.000004
Холодный		0.000011
	ВСЕГО:	0.000011
Всего за год		0.000025

Максимальный выброс составляет: 0.0000556 г/с. Месяц достижения: Январь.

Наименован	MI	Кнтр	Схр	Выброс (г/с)
ue				
(д)	4.000	1.0	да	0.0000556

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		7.9E-7
	ВСЕГО:	7.9E-7
Переходный		3.8E-7
	ВСЕГО:	3.8E-7
Холодный		0.000001
	ВСЕГО:	0.000001
Всего за год		0.000002

Максимальный выброс составляет: 0.0000056 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ue				
(д)	0.400	1.0	да	0.0000056

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000001
	ВСЕГО:	0.000001
Переходный		6.3E-7
	ВСЕГО:	6.3E-7

Холодный		0.000002
	ВСЕГО:	0.000002
Всего за год		0.000004

Максимальный выброс составляет: 0.0000093 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
(д)	0.670	1.0	да	0.0000093

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000008
	ВСЕГО:	0.000008
Переходный		0.000003
	ВСЕГО:	0.000003
Холодный		0.000008
	ВСЕГО:	0.000008
Всего за год		0.000020

Максимальный выброс составляет: 0.0000444 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период)
		(тонн/год)
Теплый		0.000001
	ВСЕГО:	0.000001
Переходный		5.5E-7
	ВСЕГО:	5.5E-7
Холодный		0.000001
	ВСЕГО:	0.000001
Всего за год		0.000003

Максимальный выброс составляет: 0.0000072 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый		0.000003
	ВСЕГО:	0.000003
Переходный		0.000001

	ВСЕГО:	0.000001
Холодный		0.000003
	ВСЕГО:	0.000003
Всего за год		0.000007

Максимальный выброс составляет: 0.0000167 г/с. Месяц достижения: Январь.

Наименован ие	Ml	Кнтр	%%	Схр	Выброс (г/с)
(д)	1.200	1.0	100.0	да	0.0000167

Суммарные выбросы по предприятию

Код	Название	Валовый выброс
<i>в-ва</i>	вещества	(т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.000020
0304	Азот (II) оксид (Азота оксид)	0.000003
0328	Углерод (Сажа)	0.000002
0330	Сера диоксид-Ангидрид сернистый	0.000004
0337	Углерод оксид	0.000042
0401	Углеводороды	0.000007

Расшифровка суммарного выброса углеводородов (код 0401)

Код	Название	Валовый выброс
<i>в-ва</i>	вещества	(m/20d)
2732	Керосин	0.000007

ИЗА №6411

Завальная яма

M=K1*K2*K3*K4*K5*K7*K8*K9*G4*B*106/3600,

где К1 – весовая доля пылевой фракции в материале;

K2 – доля пыли (от всей весовой пыли);

К3 – коэффициент, учитывающий местные метеоусловия;

K4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К5 – коэффициент, учитывающий влажность материала;

К7 – коэффициент, учитывающий крупность материала;

K8 – поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K8=1

К9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке;

G4 – суммарное количество перерабатываемого материала в час;

В – коэффициент, учитывающий высоту пересыпки;

 $M=0.04*0.03*1.4*1*0.4*0.5*1*1*0.7*20*10^{6}/3600=1.31 \text{ r/c}; 41.31216 \text{ т/год}.$

ИЗА №6412

Силос 1

 $M=0.04*0.03*1.4*1*0.4*0.5*1*1*0.7*11*10^6/3600=0.7186666$ г/с; 22,6638698976 т/год.

ИЗА №6413

Силос 2

 $M=0.04*0.03*1.4*1*0.4*0.5*1*1*0.7*11*10^6/3600=0.7186666$ г/с; 22,6638698976 т/год.

ИЗА №6414

Зерновая нория 1

 $M=0.04*0.03*1.4*1*0.4*0.5*1*1*0.7*13*10^6/3600=0.8493333$ г/с; 26,7845749488 т/год.

ИЗА №6415

Зерновая нория 2

M=0,04*0,03*1,4*1*0,4*0,5*1*1*0,7*13*106/3600=0,8493333 г/с; 26,7845749488 т/год.

ПРЫВАТНАЕ ВЫТВОРЧАЕ УНІТАРНАЕ ПРАДПРЫЕМСТВА «СМУ Энергатэхсэрвіс»

Юрыдычны адрас: 223036, Мінская вобласць, Мінскі раён, г. Заслаўе, вул. Паркавая, д. 13, 1-шы паверх, п. №1 Паштовы адрас: 223034, Мінская вобласць, Мінскі раён, г. Заслаўе, Мікрараён-2, д. 25 УНП 691368809 Р/р ВУ 08 ALFA 3012 2E36 8200 1027 0000 у ЗАТ «Альфа-Банк» г. Мінск, БІК ALFABY2X тэл.: +375 17 517 34 96; +7 495 640 55 25 E-mail: info@smuets.by Web: www.smuets.by

ЧАСТНОЕ ПРОИЗВОДСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «СМУ Энерготехсервис»

Юридический адрес: 223036, Минская область, Минский район, г. Заславль, ул. Парковая, д. 13, 1-й этаж, к. № 1 Почтовый адрес: 223034, Минская область, Минский район, г. Заславль, Микрорайон-2, д. 25 УНП 691368809

Р/с ВУ 08 ALFA 3012 2E36 8200 1027 0000

в ЗАО «Альфа-Банк» г. Минск, БИК ALFABY2X тел.: +375 17 517 34 96; +7 495 640 55 25 E-mail: info@smuets.by Web: www.smuets.by

Исх. б/н от 08.04.2025г.

Директору НИИ «Экотоксикологии» ФГБОУ ВО УГЛТУ Винокурову М.В.

О степени очистки дымовых газов

Сообщаем Вам, что для очистки дымовых газов от твердых частиц на объекте «Производственно-логистический комплекс в Амурской области ООО «Дальневосточный Агротерминал». Энергоцентр» будет применяться следующее газоочистное оборудование:

- 1. Циклон Ц-6300 производства СМУ «Энерготехсервис» со средней степенью очистки 86%.
- 2. Рукавный фильтр ФРЦ-6500 производства СМУ «Энерготехсервис» со средней степенью очистки 99%.

Главный инженер

Il Haprig -

Черепанов П.В.

Таблица регистрации изменений Номера листов (страниц) измененн замененн ных новых ванных ва	Номера листов (страниц) Всего листов Номер новых аннулиро (страниц) док. Подп. Да				T- ~					
1зм. измененн замененн новых аннулиро (страниц) док. Подп. Да	Ізм. измененн замененн новых аннулиро (страниц) док. Подп. Да			•				ИЙ		
		Изм.	измененн	замененн			листов (страниц)	Номер док.	Подп.	Дат
				<u> </u>		<u> </u>				
					ļ					

Взам. инв. №

Подпись и дата

Инв. № подл.